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Chapter 1 Fourier Series

Introduction

h Periodic Function
h Fourier Series

h Even & Odd Functions

1.1 Periodic function

Definition 1.1

♣A function f(x) is said to be periodic if f(x+ T ) = f(x) for all x, where the period is T .

Example 1.1 sin(x+ T ) = sin(x).

1.2 Fourier Series

Definition 1.2

♣

If a function f(x) is defined on an interval (−π, π) and f(x) is periodic and f(x) is piecewise continuous
in (−π, π) then under these three conditions the Fourier series of

f(x) =
a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) ,

where,

a0 =
1

π

∫ π

−π
f(x)dx

an =
1

π

∫ π

−π
f(x) cosnxdx

bn =
1

π

∫ π

−π
f(x) sinnxdx

1.3 Even & Odd Functions

Definition 1.3

♣A function f(x) is said to be even if f(−x) = f(x).

Example 1.2
cos(−x) = cosx.

Definition 1.4

♣A function f(x) is said to be odd if f(−x) = −f(x).

Example 1.3
sin(−x) = − sinx.
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�
Note For product

1. even × even = even
2. even × odd = odd
3. odd × odd = even

Proposition 1.1

♠

∫ a

−a
f(x)dx =

2
∫ a
0 f(x)dx, if f(x)is even

0, if f(x)is odd.

K Chapter 1 Exercisek

1. Define even function and odd function.

2



Chapter 2 Fourier Integral

Introduction

h Fourier Integral
h Fourier Sine and Cosine Integral

h Different forms of Fourier Integral

2.1 Fourier Integral

Definition 2.1

♣

If f(x) is piecewise continuous on every interval (−l, l) and at a point of discontinuity x0, f(x) is given
by f(x0−+f(x0+)

2 , and also if
∫∞
−∞ |f(t)|dt is finite, then for every λ > 0, the Fourier integral is given by

f(x) =

∫ ∞
0

(A(λ) cosλx+B(λ) sinλx) dλ (2.1)

where

A(λ) =
1

π

∫ ∞
−∞

f(t) cosλtdt (2.2)

B(λ) =
1

π

∫ ∞
−∞

f(t) sinλtdt (2.3)

Problem 2.1 Find the Fourier integral of

f(x) =


−2, 0 ≤ x ≤ 0

1, −1 < x < 0

0, |x| > 1.

Solution Here, f(x) is piecewise continuous on (−∞,∞), and∫ ∞
−∞
|f(t)|dt =

∫ −1
−∞
|f(t)|dt+

∫ 0

−1
|f(t)|dt+

∫ 1

0
|f(t)|dt+

∫ ∞
1
|f(t)|dt

= 0 +

∫ ∞
−∞

2dt+

∫ ∞
−∞

1dt+ 0 = [2t]0−1 + [t]10 = 2 + 1 = 3

which is finite. So, it is possible to find Fourier integral of f(x). Now

A(λ) =
1

π

∫ ∞
−∞

f(t) cosλtdt

=
1

π

(∫ 0

−1
f(t) cosλtdt+

∫ 1

0
f(t) cosλtdt

)
=

1

π

(∫ 0

−1
(−2t) cosλtdt+

∫ 1

0
1 cosλtdt

)
=

1

π

([
−2 sinλt

λ

]0
−1

+

[
sinλt

λ

]1
0

)

=
1

π

(
−2 sinλ

λ
+

sinλ

λ

)
=

1

π

(
− sinλ

λ

)
= −sinλ

πλ
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Again,

B(λ) =
1

π

∫ ∞
−∞

f(t) sinλtdt

=
1

π

(∫ 0

−1
f(t) sinλtdt+

∫ 1

0
f(t) sinλtdt

)
=

1

π

(∫ 0

−1
(−2t) sinλtdt+

∫ 1

0
1 sinλtdt

)
=

1

π

([
−2(− cosλt)

λ

]0
−1

+

[
− cosλt

λ

]1
0

)

=
1

π

(
2

λ
− 2 cosλ

λ
− cosλ

λ
+

1

λ

)
=

1

π

(
3

λ
− 3 cosλ

λ

)
=

3

πλ
(1− cosλ)

The Fourier integral of f(x) is

f(x) =

∫ ∞
0

(
−sinλ

πλ
cosλx+

3

πλ
(1− cosλ) sinλx

)
dλ

=
1

π

∫ ∞
0

(
−sinλ

λ
cosλx+

3

λ
(1− cosλ) sinλx

)
dλ

2.2 Fourier Cosine and Sine Integral

If f(x) is even function then from (2.2)-(2.3), we have

A(λ) =
2

π

∫ ∞
0

f(t) cosλtdt

B(λ) = 0

Putting these values in (2.1), we get Fourier integral for even function, or Fourier Cosine integral

f(x) =
2

π

∫ ∞
0

(∫ ∞
0

f(t) cosλtdt

)
cosλxdλ

Similarly, if f(x) is odd function then from (2.2)-(2.3), we have

A(λ) = 0

B(λ) =
2

π

∫ ∞
0

f(t) sinλtdt

Putting these values in (2.1), we get Fourier integral for odd function, or Fourier Sine integral

f(x) =
2

π

∫ ∞
0

(∫ ∞
0

f(t) sinλtdt

)
sinλxdλ

Problem 2.2 Find the Fourier integral of e−x; x > 0.
Or, Show that ∫ α

0

cosλx

λ2 + 1
dλ =

π

2
e−x; x ≥ 0

Solution Here, f(x) is continuous on (0,∞), and∫ ∞
0
|f(t)|dt =

∫ ∞
0

e−tdt = [−e−t]∞0 = [0 + 1] = 1

4
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which is finite. So, it is possible to find Fourier integral of f(x). Now

A(λ) =
2

π

∫ ∞
0

f(t) cosλtdt

=
2

π

∫ ∞
0

e−t cosλtdt

=
2

π

[
e−t (− cosλt+ λ sinλt)

1 + λ2

]∞
0

=
2

π

[
0− −1

1 + λ2

]
=

2

π(1 + λ2)
,

And

B(λ) = 0

The Fourier integral of e−x is

e−x =

∫ ∞
0

2

π(1 + λ2)
cosλxdλ

=
2

π

∫ ∞
0

cosλx

1 + λ2
dλ

=⇒
∫ ∞
0

cosλx

1 + λ2
dλ =

πe−x

2

2.3 Different forms of Fourier Integrals

Proposition 2.1

♠

Fourier integral formula (2.1) also can be rewritten as follows

f(x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(t) cosλ(t− x)dtdλ. (2.4)

K Chapter 2 Exercisek

1. Define Fourier integral.
2. Write down the Fourier integral formula for even function.
3. Write down Fourier Cosine and Sine integrals.
4. Find the Fourier integral of

f(x) =


−2, 0 ≤ x ≤ 0

1, −1 < x < 0

0, |x| > 1.

5. Find the Fourier integral of e−x; x > 0.
6. Show that ∫ α

0

cosλx

λ2 + 1
dλ =

π

2
e−x; x ≥ 0

5



Chapter 3 Fourier Transform

Introduction

h Fourier Transform
h Property of Fourier Transform
h Convolution

h Convolution theorem of Fourier Transform
h Fourier Sine Transform
h Fourier Cosine Transform

3.1 Fourier Transform

Definition 3.1

♣

If a function f(x) is defined on (−∞,∞) it is continuous and piece-wise smooth, f(t)→ 0 when |t| → α

and f(x) is absolutely integrable then the Fourier transform of f(x) denoted by F (α) is defined by

F [f(x)] = F (α) =
1√
2π

∫ ∞
−∞

f(t)eiαtdt. (3.1)

The inverse of F (α) denoted by F−1[F (α)] is given by

F−1[F (α)] = f(x) =
1√
2π

∫ ∞
−∞

F (α)e−iαxdα (3.2)

3.2 Properties of Fourier Transform

Some useful properties of Fourier transforms are as follows:

Fourier transform is linear F [af(t) + bg(t)] = aF [f(t)] + bF [g(t)] = aF (α) + bG(α)

Shifting property F [f(t− c)] = eiαcF [f(t)] = eiαcF (α)

Scaling property F [f(ct)] = 1
cF
[
f( tc)

]
= 1

cF ( tc)

Differentiation F [f ′(t)] = −iαF [f(t)] = −iαF (α)

Modulation property f(x) cos ax = 1
2 [F (α+ a) + F (α− a)]

Proposition 3.1

♠

If f(x) has the Fourier transform F (α), then f(x) cos ax has the Fourier transform
1

2
(F (α+ a) + F (α− a)) .

Proof

F [f(x) cos ax] =

∫ ∞
−∞

f(x) cos axe−iαxdx

=

∫ ∞
−∞

f(x)
1

2

(
eiax + e−iax

)
e−iαxdx

=
1

2

∫ ∞
−∞

[
e−i(α−a)xf(x) + e−i(α+a)xf(x)

]
dx

=
1

2

[∫ ∞
−∞

e−i(α−a)xf(x)dx+

∫ ∞
−∞

e−i(α+a)xf(x)dx

]
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Hence,

F [f(x) cos ax] =
1

2
(F (α+ a) + F (α− a))

3.3 Convolution

Definition 3.2

♣

If two functions f(x) and g(x) are defined on (−∞,∞) then the convolution of f(x) and g(x) is denoted
by f ∗ g, or f(x) ∗ g(x) and is defined by

f ∗ g =

∫ ∞
−∞

f(u)g(x− u)du. (3.3)

3.4 Convolution of Fourier Transform

Theorem 3.1

♥

The Fourier transform of the convolution of f(x) and g(x) is the product of the Fourier transform of
f(x) and the Fourier transform of g(x) i.e.

F [f ∗ g] = F [f ] ∗ F [g]. (3.4)

Proof

F [f ∗ g] =

∫ ∞
−∞

[f ∗ g]eiαxdx

=

∫ ∞
−∞

[∫ ∞
−∞

f(u)g(x− u)du

]
eiαxdx

=

∫ ∞
−∞

[∫ ∞
−∞

g(x− u)eiαxdx

]
f(u)du (3.5)

Let x− u = v, then dx = dv, x = u + v, putting all these values and changing corresponding limits in (3.5),
we have

F [f ∗ g] =

∫ ∞
−∞

[∫ ∞
−∞

g(v)eiα(u+v)dv

]
f(u)du

=

∫ ∞
−∞

[∫ ∞
−∞

g(v)eiαvdv

]
eiαuf(u)du

=

∫ ∞
−∞

(F [g]) eiαuf(u)du

= F [g]

∫ ∞
−∞

eiαuf(u)du

F [f ∗ g] = F [f ]F [g] (3.6)

Problem 3.1 Find the Fourier transform of f(x) = e−|x|.

7
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We also have,

=
1√
2π

[∫ 0

−∞
exeiαxdx+

∫ ∞
0

e−xeiαxdx

]
=

1√
2π

[∫ 0

−∞
e(1+iα)xdx+

∫ ∞
0

e−(+1−iα)xdx

]

=
1√
2π

[e(1+iα)x
1 + iα

]0
−∞

+

[
e−(1−iα)x

−(1− iα)

]∞
0


=

1√
2π

(
1

1 + iα

(
e0 − e−∞

)
+

1

−(1− iα)

(
e−∞ − e0

))
=

1√
2π

(
1

1 + iα
(1− 0) +

1

−(1− iα)
(0− 1)

)
=

1√
2π

(
1

1 + iα
+

1

(1− iα)

)
=

1√
2π

(
1 + iα+ 1− iα

1− i2α2

)
=

1√
2π

2

1 + α2
=

√
2

π

1

1 + α2
(3.7)

Problem 3.2 Let

f(x) =

1− x2, |x| ≤ 1

0, |x| > 1,
(3.8)

and Hence evaluate ∫ ∞
0

(
x cosx− sinx

x3

)
cos

x

2
dx

Solution By the definition of Fourier transform

F [f(x)] =

∫ ∞
−∞

f(x)eiαxdx

=

∫ −1
−∞

f(x)eiαxdx+

∫ 1

−1
f(x)eiαxdx+

∫ ∞
1

f(x)eiαxdx

= 0 +

∫ 1

−1
(1− x2)eiαxdx+ 0

=

[
(1− x2)e

iαx

iα

]1
−1

+ 2

∫ 1

−1
x
eiαx

iα
dx

= 2

[
xeiαx

(iα)2

]1
−1
− 2

∫ 1

−1

eiαx

(iα)2
dx

= − 2

α2

(
eiα + e−iα

)
+

2

iα3

[
eiαx

]1
−1

= − 4

α2
cosα+

4

iα3

[
eiα − e−iα

]
= − 4

α2
cosα+

4

α3
cosα

=⇒ F (α) = 4

(
sinα− α cosα

α3

)
(3.9)

8
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Taking the corresponding inversion formula.

f(x) =
1

2π

∫ ∞
−∞

F (α)e−iαxdα

=
1

2π

∫ ∞
−∞

4

(
sinα− α cosα

α3

)
e−iαxdα

=
1

2π

∫ ∞
−∞

4

(
sinα− α cosα

α3

)
(cosαx− i sinαx) dα

=
2

π

∫ ∞
−∞

(
sinα− α cosα

α3

)
cosαxdα− 2i

π

∫ ∞
−∞

(
sinα− α cosα

α3

)
sinαxdα

Equating the real part from both sides

f(x) =
2

π

∫ ∞
−∞

(
sinα− α cosα

α3

)
cosαxdα

putting x = 1
2 , we get

4

π

∫ ∞
0

(
sinα− α cosα

α3

)
cos

α

2
dα =

(
1− 1

4

)
=

3

4∫ ∞
0

(
sinα− α cosα

α3

)
cos

α

2
dα =

3π

16∫ ∞
0

(
α cosα− sinα

α3

)
cos

α

2
dα = −3π

16

changing variable α = x, ∫ ∞
0

(
x cosx− sinx

x3

)
cos

x

2
dx = −3π

16
.

3.5 Fourier Sine Transform

Definition 3.3

♣

The infinite Fourier sine transform of F (x), 0 < x <∞ is defined by

fs(n) =

∫ ∞
0

F (x) sinnxdx (3.10)

where n is an integer. The function F (x) is then called the inverse Fourier sine transform of fs(n) and
we can write

f(x) =
2

π

∫ ∞
0

fs(n) sinnxdn. (3.11)

3.6 Fourier Cosine Transform

Definition 3.4

♣

The infinite Fourier cosine transform of F (x), 0 < x <∞ is defined by

fc(n) =

∫ ∞
0

F (x) cosnxdx (3.12)

where n is an integer. The function F (x) is then called the inverse Fourier cosine transform of fc(n) and
we can write

f(x) =
2

π

∫ ∞
0

fc(n) cosnxdn. (3.13)

9
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Problem 3.3 Find the Fourier sine and cosine transform of e−x; x > 0.
Solution From the definition of Fourier sine transform

fs(n) =

∫ ∞
0

F (x) sinnxdx =

∫ ∞
0

e−x sinnxdx (3.14)

Now, let

I =

∫
e−x sinnxdx = −e−x sinnx+ n

∫
e−x cosnxdx

= −e−x sinnx− ne−x cosnx− n2
∫
e−x sinnxdx

= −e−x sinnx− ne−x cosnx− n2I

=⇒ (n2 + 1)I = −e−x sinnx− ne−x cosnx+ C

=⇒ I =
e−x

(n2 + 1)
(− sinnx− n cosnx) + C

Using I in (3.14) we have,

fs(n) =
1

(n2 + 1)

[
−e−x (sinnx+ n cosnx)

]∞
0

=
1

(n2 + 1)
[−0 + (n)] =

n

(n2 + 1)
.

Similarly, from the definition of Fourier cosine transform

fc(n) =

∫ ∞
0

F (x) cosnxdx =

∫ ∞
0

e−x cosnxdx (3.15)

Now, let

J =

∫
e−x cosnxdx = −e−x cosnx− n

∫
e−x sinnxdx

= −e−x cosnx+ ne−x sinnx− n2
∫
e−x cosnxdx

= −e−x cosnx+ ne−x sinnx− n2J

=⇒ (n2 + 1)J = −e−x cosnx+ ne−x sinnx+ C

=⇒ J =
e−x

(n2 + 1)
(− cosnx+ n sinnx) + C

Using J in (3.15) we have,

fc(n) =
1

(n2 + 1)

[
e−x (− cosnx+ n sinnx)

]∞
0

=
1

(n2 + 1)
[0 + 1] =

1

(n2 + 1)
.

K Chapter 3 Exercisek

1. If f(x) has the Fourier transform F (α), then f(x) cos ax has the Fourier transform
1

2
(F (α+ a) + F (α− a)) .

2. Find the Fourier transform of f(x) = e−|x|.
3. Prove that Fourier transform of the convolution of f(x) and g(x) is the product of the Fourier transform

of f(x) and g(x).
4. Find the Fourier sine and cosine transform of e−x; x > 0.

10



Chapter 3

5. Let

f(x) =

1− x2, |x| ≤ 1

0, |x| > 1,

and Hence evaluate ∫ ∞
0

(
x cosx− sinx

x3

)
cos

x

2
dx

11



Chapter 4 Finite Fourier Transform

Introduction

h Finite Fourier Sine Transform h Finite Fourier Cosine Transform

4.1 Finite Fourier Sine Transform

Definition 4.1

♣

The finite Fourier sine transform of F (x), 0 < x < l is defined by

fs(n) =

∫ l

0
F (x) sin

nπx

l
dx (4.1)

where n is an integer. The function F (x) is then called the inverse finite Fourier sine transform of fs(n)

and we can write

f(x) =
2

l

∞∑
n=1

fs(n) sin
nπx

l
. (4.2)

4.2 Finite Fourier Cosine Transform

Definition 4.2

♣

The finite Fourier cosine transform of F (x), 0 < x < l is defined by

fc(n) =

∫ l

0
F (x) cos

nπx

l
dx (4.3)

where n is an integer. The function F (x) is then called the inverse finite Fourier cosine transform of
fc(n) and we can write

f(x) =
2

l

∞∑
n=1

fc(n) cos
nπx

l
. (4.4)

Theorem 4.1

♥

For finite Fourier transform

F (x) =
2

l

∞∑
n=1

fs(n) sin
nπx

l
(4.5)

F (x) =
1

l
fc(0) +

2

l

∞∑
n=1

fc(n) cos
nπx

l
(4.6)

Proof If F (x) be a single valued function (−l, l), then

F (x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
(4.7)
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where,

an =
1

l

∫ l

−l
F (x) cos

nπx

l
dx (4.8)

bn =
1

l

∫ l

−l
F (x) sin

nπx

l
dx (4.9)

Let F (x) is odd then F (x) cos nπxl is also odd then we have,

an =
1

l

∫ l

−l
F (x) cos

nπx

l
dx = 0.

Also putting n = 0 in (4.8), we get,

a0 =
1

l

∫ l

−l
F (x)dx = 0.

Again if F (x) is odd then F (x) sin nπx
l is even, applying this in (4.9)

bn =
1

l

∫ l

−l
F (x) sin

nπx

l
dx =

2

l

∫ l

0
F (x) sin

nπx

l
dx

Now putting a0, an, and bn in (4.7), we get

F (x) =
∞∑
n=1

(
2

l

(∫ l

0
F (x) sin

nπx

l
dx

)
sin

nπx

l

)

=
2

l

∞∑
n=1

fs(n) sin
nπx

l

where

fs(n) =

∫ l

0
F (x) sin

nπx

l
dx.

Again, let F (x) is even then F (x) cos nπxl is also even then we have,

an =
1

l

∫ l

−l
F (x) cos

nπx

l
dx =

2

l

∫ l

0
F (x) cos

nπx

l
dx.

Also putting n = 0 in (4.8), we get,

a0 =
1

l

∫ l

−l
F (x)dx =

2

l

∫ l

0
F (x)dx.

Again if F (x) is even then F (x) sin nπx
l is odd, applying this in (4.9)

bn =
1

l

∫ l

−l
F (x) sin

nπx

l
dx = 0.

Now putting a0, an, and bn in (4.7), we get

F (x) =
1

l

∫ l

0
F (x)dx+

∞∑
n=1

(
2

l

(∫ l

0
F (x) cos

nπx

l
dx

)
cos

nπx

l

)

=
1

l
fc(0) +

2

l

∞∑
n=1

fc(n) sin
nπx

l

where

fc(0) =

∫ l

0
F (x)dx

and

fc(n) =

∫ l

0
F (x) cos

nπx

l
dx.

13
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Problem 4.1 Find the finite Fourier sine transform of

F (x) = cos kx; 0 < x < π.

Solution We know

fs(n) =

∫ π

0
F (x) sinnxdx =

∫ π

0
cos kx sinnxdx

=
1

2

∫ π

0
(sin(n+ k)x+ sin(n− k)x) dx

=
1

2

[
−cos(n+ k)x

n+ k
− cos(n− k)x

n− k

]π
0

=
1

2

[
−cos(n+ k)π

n+ k
+

1

n+ k
− cos(n− k)π

n− k
+

1

n− k

]
=

1

2

[
−(n− k) cos(n+ k)π + (n+ k) cos(n− k)π

(n+ k)(n− k)
+
n− k + n+ k

(n+ k)(n− k)

]
=

1

2

[
−n (cos(n+ k)π + cos(n− k)π)− k (cos(n+ k)π − cos(n− k)π)

n2 − k2
+

2n

n2 − k2

]
=

1

2(n2 − k2)
[−n (cos(n+ k)π + cos(n− k)π) + k (cos(n+ k)π − cos(n− k)π) + n]

=
1

2(n2 − k2)
[−n cos kπ cosnπ − k sin kπ sinnπ + n]

=
n

2(n2 − k2)
[1− cos kπ cosnπ]

=
n

2(n2 − k2)
[1− (−1)n cos kπ] .

Problem 4.2 Find the finite Fourier sine transform of

F (x) =

x : 0 ≤ x ≤ π/2

π − x : π/2 ≤ x ≤ π
Solution We know

fs(n) =

∫ π

0
F (x) sinnxdx

=

∫ π/2

0
F (x) sinnxdx+

∫ π

π/2
F (x) sinnxdx

=

∫ π/2

0
x sinnxdx+

∫ π

π/2
(π − x) sinnxdx

=

[
−x cosnx

n

]π/2
0

+
1

n

∫ π/2

0
cosnxdx+

[
(π − x) cosnx

−n

]π
π/2

− 1

n

∫ π

π/2
cosnxdx

= − π

2n
cos

nπ

2
+

1

n2
[sinnx]

π/2
0 +

π

2n
cos

nπ

2
− 1

n2
[sinnx]ππ/2

=
1

n2

[
sin

nπ

2
− 0
]
− 1

n2

[
0− sin

nπ

2

]
fs(n) =

2

n2
sin

nπ

2
.

Problem 4.3 Find the finite Fourier cosine transform of F (x) = 2x; 0 < x < 4.

14
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Solution Here, l=4, so we have,

fc(n) =

∫ 4

0
F (x) cos

nπx

4
dx

= 2

∫ 4

0
x cos

nπx

4
dx

=
2 · 4
nπ

[
x sin

nπx

4

]4
0
− 8

nπ

∫ 4

0
sin

nπx

4
dx

= 0 +
32

n2π2

[
cos

nπx

4

]4
0

=
32

nπ
(cosnπ − 1) .

Problem 4.4 Find the finite sine and cosine transform of

f(x) =
(

1− x

π

)
Solution We have,

fs(n) =

∫ π

0
f(x) sinnxdx

=

∫ π

0

(
1− x

π

)
sinnxdx

=

∫ π

0
sinnxdx− 1

π

∫ π

0
x sinnxdx

= − 1

n
[cosnx]π0 +

1

nπ
[x cosnx]π0 −

1

π

∫ π

0
cosnxdx

= − 1

n
[cosnπ − 1] +

1

nπ
[π cosnπ − 0]− 1

n2π
[sinnx]π0

=
1

n
− 0 =

1

n
.

Also we have,

fc(n) =

∫ π

0
f(x) cosnxdx

=

∫ π

0

(
1− x

π

)
cosnxdx

=

∫ π

0
cosnxdx− 1

π

∫ π

0
x cosnxdx

=
1

n
[sinnx]π0 −

1

nπ
[x sinnx]π0 +

1

π

∫ π

0
sinnxdx

=
1

n
[sinnπ − 0]− 1

nπ
[π sinnπ − 0]− 1

n2π
[cosnx]π0

= − 1

n2π
[cosnπ − 1] = − 1

n2π
[(−1)n − 1] =

1

n2π
[1− (−1)n] .

K Chapter 4 Exercisek

1. Define finite Fourier sine transform.
2. Prove that for finite Fourier transform

(a).

F (x) =
2

l

∞∑
n=1

fs(n) sin
nπx

l

15
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(b).

F (x) =
1

l
fc(0) +

2

l

∞∑
n=1

fc(n) cos
nπx

l

3. Find the finite Fourier sine transform of

F (x) =

x : 0 ≤ x ≤ π/2

π − x : π/2 ≤ x ≤ π
4. Find the finite sine and cosine transform of

f(x) =
(

1− x

π

)
5. Find the finite Fourier sine transform of

F (x) = cos kx; 0 < x < π.

6. Find the finite Fourier cosine transform of F (x) = 2x; 0 < x < 4.

16



Chapter 5 Application of Finite Fourier Transform

Introduction

h Four formulae related to Boundary Value
Problem

h Selection of Finite Sine or Cosine Transform
h Application of Finite Fourier Transform

5.1 Four formulae related to Boundary Value Problem

fc

{
∂U

∂x

}
= U(l, t) cosnπ − U(0, t)− nπ

l
fs(U)

fs

{
∂U

∂x

}
= −nπ

l
fc(U)

fs

{
∂2U

∂x2

}
= −nπ

l
U(l, t) cosnπ +

nπ

l
U(0, t)− n2π2

l
fs(U)

fc

{
∂2U

∂x2

}
= Ux(l, t) cosnπ − Ux(0, t) +

n2π2

l2
fc(U)

5.2 Selection of Finite Sine or Cosine Transform

We have to choose finite sine or cosine transform by the form of boundary conditions, such that
1. If Dirichlet boundary condition that is boundary conditions are provided for U(0, t) and U(l, t) then

choose finite sine transform.
2. For Neumann boundary condition that is boundary conditions are provided for Ux(0, t) and Ux(l, t)then

choose finite cosine transform.

5.3 Application of Finite Fourier Transform

Problem 5.1 By Fourier transform solve
∂U

∂t
=
∂2U

∂x2
, 0 < x < π, t > 0

U(0, t) = U(π, t) = 0, t > 0,

U(x, 0) = 2x, 0 < x < π.

Solution Given,
∂U

∂t
=
∂2U

∂x2
(5.1)

Taking sine transform both side of (5.3)∫ π

0

∂U

∂t
sinnxdx =

∫ π

0

∂2U

∂x2
sinnxdx (5.2)

Let

V = V (n, t) =

∫ π

0
U(x, t) sinnxdx (5.3)
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Differentiating (5.3) wrt t, we get
∂V

∂t
=

∫ π

0

∂U

∂t
sinnxdx =

∫ π

0

∂2U

∂x2
sinnxdx [Using(5.2)]

=

[
∂U

∂x
sinnx

]π
0

− n
∫ π

0

∂U

∂x
cosnxdx

= 0− n [U(x, t) cosnx]π0 − n
2

∫ π

0
U(x, t) sinnxdx

= −n2V [Using(5.3)] (5.4)

=⇒ dV

dt
= −n2V

=⇒ dV

V
= −n2dt

=⇒ lnV = −n2t+ lnC [Integrating]

=⇒ V = Ce−n
2t [Integrating] (5.5)

When t = 0 then from (5.5)

V (n, 0) = C

=⇒
∫ π

0
U(x, 0) sinnxdx = C [Using(5.3)]

=⇒ C =

[
−2x cosnx

n

]π
0

+
2

n

∫ π

0
cosnxdx

=

[
−2π

n
cosnπ − 0

]
+

2

n2
[sinnx]π0

=⇒ C =
−2π

n
cosnπ. (5.6)

Putting C in (5.5)

V (n, t) =
−2π

n
cosnπe−n

2t (5.7)

Now taking inverse sine transform

U(x, t) =
2

π

∞∑
n=1

(
−2π

n
cosnπe−n

2t sinnx

)

U(x, t) = 4
∞∑
n=1

(
(−1)n+1

n
e−n

2t sinnx

)
Problem 5.2 Use Fourier transform to solve

∂U

∂t
=
∂2U

∂x2
, 0 < x < 6; t > 0.

U(0, t) = U(6, t) = 0, t > 0,

U(x, 0) =

1 0 < x < 3

0 3 < x < 6.

Solution Given,
∂U

∂t
=
∂2U

∂x2
(5.8)

Taking sine transform both side of (5.3)∫ 6

0

∂U

∂t
sin

nπx

6
dx =

∫ π

0

∂2U

∂x2
sin

nπx

6
dx (5.9)

18
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Let

V = V (n, t) =

∫ 6

0
U(x, t) sin

nπx

6
dx (5.10)

Differentiating (5.10) wrt t, we get
∂V

∂t
= =

∫ 6

0

∂U

∂t
sin

nπx

6
dx

=

∫ 6

0

∂2U

∂x2
sin

nπx

6
dx [Using(5.9)]

=

[
∂U

∂x
sinnx

]6
0

− nπ

6

∫ 6

0

∂U

∂x
cos

nπx

6
dx

= 0− nπ

6

[
U(x, t) cos

nπx

6

]6
0
− n2π2

36

∫ π

0
U(x, t) sin

nπx

6
dx

= −n
2π2

36
V [Using(5.10)] (5.11)

=⇒ dV

dt
= −n

2π2

36
V

=⇒ dV

V
= −n

2π2

36
dt

=⇒ lnV = −n
2π2

36
t+ lnC [Integrating]

=⇒ V = Ce−
n2π2

36
t [Integrating] (5.12)

When t = 0 then from (5.12)

V (n, 0) = C

=⇒
∫ 6

0
U(x, 0) sin

nπx

6
dx = C [Using(5.10)]

=⇒ C =

∫ 3

0
U(x, 0) sin

nπx

6
dx+

∫ 6

3
U(x, 0) sin

nπx

6
dx

=

∫ 3

0
sin

nπx

6
dx+ 0

= −
[
cos

nπx

n

]3
0

= 6
1− cos(nπ/2)

nπ
(5.13)

Putting C in (5.12)

V (n, t) = 6
1− cos(nπ2 )

nπ
e−

n2π2t
36 (5.14)

Now taking inverse sine transform

U(x, t) =
2

6

∞∑
n=1

6
1− cos(nπ2 )

nπ
e−

n2π2t
36 sin

nπx

6

U(x, t) =
2

π

∞∑
n=1

1− cos(nπ2 )

n
e−

n2π2t
36 sin

nπx

6

K Chapter 5 Exercisek

1.
fc

{
∂U

∂x

}
=?
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2.
fs

{
∂U

∂x

}
=?

3.
fs

{
∂2U

∂x2

}
=?

4.
fc

{
∂2U

∂x2

}
=?

5. By Fourier transform solve
∂U

∂t
=
∂2U

∂x2
, 0 < x < π, t > 0

U(0, t) = U(π, t) = 0, t > 0,

U(x, 0) = 2x, 0 < x < π.

6. Use Fourier transform to solve
∂U

∂t
=
∂2U

∂x2
, 0 < x < 6; t > 0.

U(0, t) = U(6, t) = 0, t > 0,

U(x, 0) =

1 0 < x < 3

0 3 < x < 6.
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Chapter 6 Frequency Distributions

Introduction

h Population & Sample h Frequency Distribution

6.1 Population & Sample

Definition 6.1

♣

A population is the entire collection of all observation of interest to investigate and a sample is a
representative portion of the population which is selected for study.

6.2 Frequency Distribution

Definition 6.2

♣

Data are divided in to several classes, or categories, and determine the number of individuals belonging
to each class, called the class frequency.

Definition 6.3

♣

A tabular arrangement of data by classes together with the corresponding class frequency is called a
frequency distribution, or frequency table.

Definition 6.4

♣

A symbol (a − b), where a < b defines a class is called a class interval, and the end numbers, a, and b
are called lower and upper class limits respectively.

Definition 6.5

♣

The size, or width, of a class interval is the difference between the lower and upper class boundaries and
is also referred to as the class width, class size, or class length.

Definition 6.6

♣

The class mark, is the mid point the class interval and is obtained by taking average of the corresponding
class limits.

6.2.1 General Rules for Forming Frequency Distributions

1. Determine the largest and smallest numbers in the raw data and thus find the range (the difference between
largest and smallest numbers).

2. Divide the range into a convenient number of class intervals having the same size. If this is not feasible,
use class intervals of different sizes. The number of class intervals is usually between 5 and 20, depending
on the data. Class intervals are also chosen so that the class marks (or midpoints) coincide with the actually
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observed data. This tends to lessen the so-called grouping error involved in further mathematical analysis.
However, the class boundaries should not coincide with the actually observed data.

3. Determine the number of observations falling into each class interval; that is, find the class frequencies.
This is best done by using a tally,or score sheet.

Problem 6.1 Prepare a frequency distribution from the following data:

33 32 47 55 21 50 27 12 68 49 40 17 44 62 24
42 33 38 45 26 44 33 48 52 30 50 37 38 45 48

Solution Range is 68-12=56. If 5 class intervals are used, the class interval size is 56/5 ≡ 11, if 20
class intervals are used, the class interval size is 56/20 ≡ 3. One convenient choice for the class interval
size is 5. Also, it is convenient to choose the class 10, 15, 20, . . . . Thus the class intervals can be taken as
8−12, 13−17, 18−22, . . . . With the choice the class boundaries are 7.5, 12.5, 17.5, . . . ,which do not coincide
with the observed data.

Data Tally Frequency
8-12 1
13-17 1
18-22 1
23-27 3
28-32 2
33-37 4
38-42 4
43-47 5
48-52 6
53-57 1
58-62 1
63-68 1

Total 30

K Chapter 6 Exercisek

1. Define population?
2. What do you mean by frequency?
3. Prepare a frequency distribution from the following data:

33 32 47 55 21 50 27 12 68 49 40 17 44 62 24
42 33 38 45 26 44 33 48 52 30 50 37 38 45 48
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Chapter 7 Measures of Central Tendency and Dispersion

Introduction

h Central Tendency
h Measures of Central Tendency
h Arithmetic Mean
h Geometric Mean

h Median
h Mode
h Measure of Dispersion
h Variation

7.1 Central Tendency

Definition 7.1

♣Central tendency is a typical value which is representative of the entire group of data.

7.2 Measures of Central Tendency

The following are the five measures of central tendency that are in common use:
1. Arithmetic Mean,
2. Median,
3. Mode,
4. Geometric Mean, and
5. Harmonic Mean.

7.3 Arithmetic Mean

Definition 7.2

♣

The arithmetic mean, or briefly the mean, of a set of N numbers X1, X2, X3, . . . , XN is denoted by X̄
and is defined as

X̄ =
X1 +X2 +X3 + · · ·+XN

N
=

N∑
i=1

Xi

N
=

∑
X

N

If the numbers X1, X2, X3, . . . , Xk occur f1, f2, f3, . . . , fk times, respectively, then the arithmetic mean
is

X̄ =
f1X1 + f2X2 + f3X3 + · · ·+Xk

f1 + f2 + f3 + · · ·+ fk
=

k∑
i=1

fiXi

k∑
i=1

fi

=

∑
fX

N
,

where N =
∑
f is the total frequency.
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7.4 Median

Definition 7.3

♣

The median of a set of N numbers arranged in order of magnitude is the middle value if N is odd, or
the average of the middle two values if N is even.

For grouped data, the median, obtained by interpolation, is given by

Median = L1 +

(
N
2 − (

∑
f)l

fmedian

)
c

where L1 = lower class boundary of the median class
N = number of items in the data
(
∑
f)l = sum of the frequency of all classes lower than the median class

fmedian = frequency of the median class
c = size of the median class interval.

7.5 Mode

Definition 7.4

♣

The mode of a set of numbers is that value which occurs with the greatest frequency. The mode may not
exist, and even if it exist it may not be unique.

In the case of grouped data where a frequency curve has been constructed to fit the data, the mode will
be the value (or values) of X corresponding to the maximum point (or points) on the curve. This value of X
is sometimes denoted by X̂ . From a frequency distribution or histogram the mode can be obtained from the
formula

Mode = L1 +

(
∆1

∆1 + ∆2

)
c

where L1 = lower class boundary of the modal class (i.e., the class containing the mode)
∆1 = excess of modal frequency over frequency of next-lower class
∆2 = excess of modal frequency over frequency of next-higher class
c = size of the modal class interval.

7.6 Geometric Mean

Definition 7.5

♣

The geometric meanG of a set ofN positive numbersX1, X2, X3, . . . , XN is theN th root of the product
of the numbers.

G = N
√
X1X2X3 . . . XN

Example 7.1 The geometric mean of the numbers 2, 4, and 8 is

G =
3
√

2 · 4 · 8 = 4.

Problem 7.1 Marks obtained by 10 students given below:
40, 30, 80, 70, 50, 20, 48, 95, 12, 18 compute the mean, and median.
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Solution Mean =
∑
X
N = 40+30+80+70+50+20+48+95+12+18

10 = 463
10 = 46.3.

The given marks can be sorted as follows:
12, 18, 20, 30, 40, 48, 50, 70, 80, 95.
Here, N = 10 is even. So, Median = X5+X6

2 = 40+48
2 = 44.

7.7 Measure of Dispersion

Problem 7.2 The following table gives the height (in inches) of 100 students of class. Compute mean, mode,
and median of the height. Also comment about the name of the distribution:

Height (inches) 60-62 62-64 64-66 66-68 68-70 70-72
No. of students 5 18 42 20 8 7

Solution We have, Mean =
∑
fX
N = 6558

100 = 65.58.

Height (inches) class Mark (X) Frequency f cf fX

60-62 61 5 5 305
62-64 63 18 23 1134
64-66 65 42 65 2730
66-68 67 20 85 1340
68-70 69 8 93 552
70-72 71 7 100 497

Total 100 6558

Median = L1 +

(
N
2 − (

∑
f)l

fmedian

)
c = 64 +

(
100
2 − 23

42

)
2 = 65.29

Mode = L1 +

(
∆1

∆1 + ∆2

)
c = 64 +

(
42− 18

42− 18 + 42− 20

)
2 = 65.04

Here, mean > median > mode, nature of data is positive. So the distribution is positive skewed.

7.8 Dispersion

7.8.1 Significance of Measuring Dispersion

Measures of dispersion are needed for four basic significance
1. To determine the reliability of an average: Measure of dispersion point out as to how for an average is

representative of the entire data. On the other hand, when variation is large the average is not so typical,
and unless the sample is very large, the average may be quite unreliable.

2. To serve as a basis for the control of the variability: Another purpose of measuring variation is to
determine nature and cause of variation in order to control the variation itself. Thus measurement of
variation is basic to the control of cause of variation.

3. To compare two or more series with regard to the variability: Measures of variation enable comparison
to be made of two or more series with regard to their variability.

4. To facilitate the the use of other statistical measures: Many powerful analytical tools in statistics such
as correlation analysis, the testing of hypothesis, the analysis of fluctuations, techniques of production
control, cost control, etc. are based on measure of variation of one kind or another.
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7.9 Variation

Definition 7.6

♣

The standard deviation of a set of N numbers X1, X2, X3, . . . , XN is denoted by s and is defined by

s =

√√√√√ i=1∑
N

(
Xi − X̄

)2
N

Definition 7.7

♣

The variance of a set of data is defined as the square of the standard deviation and is denoted by s2,
mathematically can be written as

v = s2 =

i=1∑
N

(
Xi − X̄

)2
N

K Chapter 7 Exercisek

1. Define central tendency.
2. Find the geometric mean of the series 2, 4, and 8.
3. Marks obtained by 10 students given below:

40, 30, 80, 70, 50, 20, 48, 95, 12, 18 compute the mean, and median.
4. Mention the significance of measuring dispersion.
5. The following table gives the height (in inches) of 100 students of class. Compute mean, mode, and

median of the height. Also comment about the name of the distribution:

Height (inches) 60-62 62-64 64-66 66-68 68-70 70-72
No. of students 5 18 42 20 8 7
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Chapter 8 Skewness, & Kurtosis

Introduction

h Skewness h Kurtosis

8.1 Skewness

Definition 8.1

♣Skewness is the degree of asymmetry, or departure from symmetry, of a distribution.

Skewness =
mean−mode

standard deviation
=

mean−mode
s

8.2 Kurtosis

Definition 8.2

♣Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal distribution.
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8.2.1 Distinguish between Skewness and Kurtosis

There are some difference between skewness and kurtosis are as follows:

Subject Skewness Kurtosis

Definition Skewness is the degree of asymmetry, or
departure from symmetry, of a distribution.

Kurtosis is the degree of peakedness of a
distribution, usually taken relative to a nor-
mal distribution.

Measurement With the help of skewness the shape of
distribution can be measured. With

Result Positive, negative or zero. Lepto, Meso, or platy kurtic.
For normal
distribution Skeness is zero Kurtosis is meso-Kurtic

Formula Sk = Mean−Mode
s β2 = m4

s4

K Chapter 8 Exercisek

1. Distinguish between Skewness and kurtosis.

28



Chapter 9 Correlation Analysis

Introduction

h Correlation

9.1 Correlation

Problem 9.1 The data related to capital and profit of five shops are given:

Capital (in lac TK.): x 5 10 15 20 25
Profit (in lac TK.): y 3 4 8 12 18

1. Draw a scatter diagram.
2. Compute the co-efficient of correlation and interpret its value.

Solution We know, Co-efficient of correlation:

X

Y

O 5 10 15 20 25 30

5

10

15

20

Figure 9.1: Scatter diagram

Capital (x) x2 Profit (y) y2 xy

5 25 3 9 15
10 100 4 16 40
15 225 8 64 120
20 400 12 144 240
25 625 18 324 450∑
x = 75

∑
x2 = 1375

∑
y = 45

∑
y2 = 557

∑
xy = 865

r =

∑
xy −

∑
x
∑
y

N√(∑
x2 − (

∑
x)2

N

)(∑
y2 − (

∑
y)2

N

)
=

865− 75·45
5√(

1375− 752

5

)(
557− 452

5

)
=

865− 675√
(1375− 1125) (557− 405)

=
190√

250 · 152
= 0.97 (9.1)
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Probable Error (P.E) =

0.6745

(
1− r2√
N

)
= 0.6745

(
1− 0.972√

5

)
= 0.6745 · 0.0268 = 0.018 (9.2)

6 times of P.E = 0.108
Since the value r > 6P.E, therefore the correlation is significant.

9.1.1 Significance of Measuring Correlation

Correlation is an important tool that is used in analyzing, measuring and interpreting the relationship
between two or more variables. The significance of measuring correlation are stated below:

1. Nature of relationship: Through correlation we can measure the nature of relationship between variables.
If we can determine the relationship, we shall be able to take proper decision. If the value of ′r′ is positive,
we can understand that increase of one variable causes increase of another variable. On the other hand,
if it is negative negative, increases of one variable causes decrease of another variable.

2. Strength of relationship: By measuring correlation, we can know the strength of the relationship between
variables. If the values of r 1 or near 1, we consider that relationship is very strong. On the other hand,
if the value of r is zero or near zero we say that the relationship is weak.

3. Effect: From the coefficient of determination, we come to know, what portion of the variation of the
dependent variable is affected by the independent variable. If the value of r2 is equal to 0.64, we
understand that 64% of dependent variable is affected by the independent variable.

4. Relationship among economic variables Coefficient of correlation help help to analyze the relationship
among the economic variables such as demand and supply, advertisement and sales, cost and revenue and
so on.
Construction regression line: Coefficient of relation is also used in determining regression lines.

5. Interpretation of relationship: By measuring the correlation we can interpret the relationship between
variables.

K Chapter 9 Exercisek

1. Write down the significance of measuring correlation.
2. The data related to capital and profit of five shops are given:

Capital (in lac TK.): x 5 10 15 20 25
Profit (in lac TK.): y 3 4 8 12 18

(a). Draw a scatter diagram.
(b). Compute the co-efficient of correlation and interpret its value.
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Chapter 10 Regression Analysis

Problem 10.1 From the following regression equations calculate the coefficient of correlation:

x = 5.28 + 0.59y

y = 1.34x+−5.40

Solution We know that the regression equation of x on y is x = a1 + b1y, which provide b1 = 0.59. Again the
regression equation of y on x is y = a2 + b2y, which provide b2 = 1.34.

We know, coefficient of correlation r =
√
b1b2 =

√
0.59 · 1.34 = 0.889.

K Chapter 10 Exercisek

1. From the following regression equations calculate the coefficient of correlation:

x = 5.28 + 0.59y

y = 1.34x+−5.40



Chapter 11 Elementary Probability Theory

Introduction

h Probability h Conditional Probability

11.1 probability

Definition 11.1

♣

Let an event E can happen in n ways out of total N possible equally likely ways. Then the probability of
occurrence of the event (called its success) is denoted by

p = P{E} =
n

N
.

The probability of nonoccurence of the event (called its failure) is denoted by

p = P{Ē} =
N − n
N

= 1− n

N
.

11.2 Conditional Probability

Definition 11.2

♣

If E1 and E2 are two events, the probability that E2 occurs given that E1 has occurred is denoted by
P{E2|E1}, and is called the conditional probability of E2 given that E1 has occurred.

Definition 11.3

♣

If the occurrence of the event E1 does not effect the probability of occurrence of the event E2, then
P{E2|E1} = P{E2} and we say that E1 and E2 are independent events; otherwise, they are dependent
events.

11.2.1 Compound Event

If we denote E1E2 the event that “both E1 and E2 occur,” sometimes called a compound event, then

P{E1E2} = P{E1}P{E2|E1}.

For independent events
P{E1E2} = P{E1}P{E2}.

11.2.2 Mutually Exclusive Events

Two or more events are called mutually exclusive if the occurrence of anyone of them excludes the
occurrence of the others. Thus if E1 and E2 are mutually exclusive events, then P{E1E2} = 0. If E1 + E2

denotes the event that “either E1 or E2 or both occur,” then

P{E1 + E2} = P{E1}+ P{E2} − P{E1E2}.
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In particular,
P{E1 + E2} = P{E1}+ P{E2}

or mutually exclusive events.
Example 11.1 There are 5 red and 4 white balls in a bag. One ball is drawn from the bag, What is the probability
that is either red or white.
Solution There are total 5 + 4 = 9 balls. Let R = event ”red ball is drawn“ and W = event “white ball is
drawn”.

P{R+W} = P{R}+ P{W} =
5

9
+

4

9
= 1.

Problem 11.1 There are 5 white and 7 red balls in a bag. Two balls are drawn such that a ball is drawn and
replaced. What is the probability that a white ball and a red ball are drawn in that order? What would be the
probability if the balls are drawn were not put back in to the bag.
Solution There are total 5 + 7 = 12 balls. Let W = event “white” on the first draw, and R = event ”red“ on
the second draw.

(a). If each ball is replaced, then W , and R are independent events and

P{WR} = P{W}P{R} =
5

12

7

12
=

35

144
.

(b). If each ball is not put back, then W , and R, are dependent events and

P{WR} = P{W}P{R|W} =
5

12

7

11
=

35

132
.

Problem 11.2 Three balls are drawn successively from the box of containing 6 red balls, 4 white balls, and 5
blue balls. Find the probability that they are drawn in the order red, white, and blue if each ball is (a) replaced
and (b) not replaced.
Solution There are total 6 + 4 + 5 = 15 balls. Let R = event ”red“ on the first draw, W = event ”white“ on
the second draw, and B = event ”blue“ on the third draw.

(a). If each ball is replaced, then R, W , and B are independent events and

P{RWB} = P{R}P{W}P{B} =
6

15

4

15

5

15
=

8

225
.

(b). If each ball is not replaced, then R, W , and B are dependent events and

P{RWB} = P{R}P{W |R}P{B|WR} =
6

15

4

14

5

13
=

4

91
.

Problem 11.3 A fair die is tossed twice. Find the probability of getting a 4, 5, or 6 on the first toss and a 1, 2,
3, or 4 on the second toss.
Solution Let E1 = event “4, 5, or 6” on the first toss, and let E2 = event “1, 2, 3, or 4” on the second toss.
Each of the six ways in which the die can fall on the first toss can be associated with each of the six ways in
which it can fall on the second toss, a total of 6 · 6 = 36 ways, all equally likely. Each of the three ways in which
E1 can occur can be associated with each of the four ways in which E2 can occur, to give 3 · 4 = 12 ways in
which both E1 and E2, or E1E2 occur. Thus P (E1E2) = 12/36 = 1/3.
Problem 11.4 A and B play 12 games of chess, of which 6 are won by A, 4 are won by B, and 2 end in draw.
They agree to play a match consisting of 3 games. Find the probability that

(a). A wins all 3 games,
(b). 2 games end in a draw,
(c). A and B win alternately, and
(d). B wins at least 1 game.

Solution Let A1, A2, and A3 denote the events “A wins” in the first, second, and third games,respectively; let
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B1, B2, and B3 denote the events “B wins” in the first, second, and third games, respectively; and let, D1, D2,
and D3 denote the events “there is a draw” in the first, second, and third games, respectively.

On the basis of their past experience(empirical probability), we shall assume that P (A) = P(A wins
anyone games) = 6

12 = 1
2 , that P (B) = P( B wins anyone games = 4

12 = 1
3 , and that P (D) = P( anyone

games ends in a draw= 2
12 = 1

6 .
(a). P(A wins all games) = P{A1A2A3} = P (A1)P (A2)P (A3) = 1

2
1
2
1
2 = 1

8 .
(b). P(2 games end in a draw)

= P{D1D2D̄3}+ P{D1D̄2D3}+ P{D̄1D2D3}

= P (D1)P (D2)P (D̄3) + P (D1)P (D̄2)P (D3) + P (D̄1)P (D2)P (D3)

=
1

6

1

6

5

6
+

1

6

5

6

1

6
+

5

6

1

6

1

6
=

15

216
=

5

72
.

(c). P(A and B win alternately)

= P{A1B2A3 +B1A2B3} = P{A1B2A3}+ P{B1A2B3}

= P (A1)P (B2)P (A3) + P (B1)P (A2)P (B3)

=
1

2

1

3

1

2
+

1

3

1

2

1

3
=

1

12
+

1

18
=

5

36
(d). P(B wins at least 1 game) = 1− P( B wins no game ) =

1− P (B̄1B̄2B̄3) = 1− P (B̄1)P (B̄2)P (B̄3) = 1− 2

3

2

3

2

3
=

19

27
.

K Chapter 11 Exercisek

1. What is conditional probability?
2. There are 5 red and 4 white balls in a bag. One ball is drawn from the bag, What is the probability that is

either red or white.
3. There are 5 white and 7 red balls in a bag. Two balls are drawn such that a ball is drawn and replaced.

What is the probability that a white ball and a red ball are drawn in that order? What would be the
probability if the balls are drawn were not put back in to the bag.

4. Three balls are drawn successively from the box of containing 6 red balls, 4 white balls, and 5 blue balls.
Find the probability that they are drawn in the order red, white, and blue if each ball is (a) replaced and
(b) not replaced.

5. A fair die is tossed twice. Find the probability of getting a 4, 5, or 6 on the first toss and a 1, 2, 3, or 4 on
the second toss.

6. A andB play 12 games of chess, of which 6 are won byB, and 2 end in draw. They agree to play a match
consisting of 3 games. Find the probability that
(a). A wins all 3 games,
(b). 2 games end in a draw,
(c). A and B win alternately, and
(d). B wins at least 1 game.
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Chapter 12 Test of Hypothesis

Introduction

h Null hypothesis h Steps of Testing

12.1 Null Hypothesis

Definition 12.1

♣

The hypothesis about a population parameter we wish to test is called a null hypothesis. For every null
hypothesis there is an alternative hypothesis.

12.2 Steps of Testing

The process of reaching decision about the population by taking and analyzing sample from the population
is called the testing of hypothesis. That means decision about the population is taken by hypothesis testing.
Several steps are followed in hypothesis testing:

1. Set up a Hypothesis: The first step in hypothesis testing is to establish the hypothesis to be tested. The
hypothesis are normally referred to as
(a). null hypothesis denoted by H0, and
(b). Alternative hypothesis denoted by H1.

Both null and alternative hypothesis must be stated in statistic terms using populations parameters.
2. Choose the level of significance: Having set up a hypothesis, the next step is to select a suitable level of

significance.
3. Determine the appropriate statistical technique and corresponding test static to use.
4. Determine the critical region. Set up the critical values that divide the rejection and non rejection regions.
5. Collect the data and compute the sample values of the appropriate test statistic.
6. Determine whether the test statistic has fallen into the rejection or non rejection region. The computed

value of the test statistic is compared with critical values for the appropriate sampling distribution to
determine whether it falls into the rejection or non rejection region.

7. Make statistical decision. If the test statistic falls into the non rejection region, the hypothesis H0 can not
be rejected. If the test statistic falls into the rejection region, the null hypothesis is rejected.

8. Express the statistical decision is the context of the problem.
Problem 12.1 A random sample of 200 tins of coconut oil gave an average weight of 4.95 kg with a standard
deviation of 0.21 kg. At 1% level of significance, can we say that net weight is 5 kg per tin?
Solution We know, Standard Error (S.E) = s√

N
= 0.21√

200
= 0.01485.

Now |Z| = 5−4.95
0.01485 = 3.367.

Here, Zcal = 3.367 > 2.58. Therefore the difference is not significant, and we can not say that net weight
of a tin is 5 kg per tin.

K Chapter 12 Exercisek
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1. What is null hypothesis?
2. Discuss the steps of hypothesis testing.
3. A random sample of 200 tins of coconut oil gave an average weight of 4.95 kg with a standard deviation

of 0.21 kg. At 1% level of significance, can we say that net weight is 5 kg per tin?
4. The standard deviation of the lifetimes of 200 electric bulbs is 100 hours. Find the

(a). 95%, and
(b). 99% confidence limits for the standard deviation of such electric bulbs.
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