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Chapter 1 Systems of Linear Equations

Introduction

h Introduction to Systems of Linear Equa-
tions

h Solution of a Non-homogeneous System

of Linear Equations
h Solution of a Homogeneous System of

Linear Equations

1.1 Introduction to Systems of Linear Equations

Let the two equations be

a1x+ b1y = c1

a2x+ b2y = c2.

If we interpret x, y as coordinate in xy-plane, then each of the above two linear equations represents a
straight line and (α, β) be a solution of the above two equations if and only if theP with the coordinates
α, β lies on both lines. Hence there are three possible cases:

No solution if the lines are parallel.
Precisely one solution if they intersect.
Infinitely many solutions if they coincide.

These cases are illustrated by the following examples:

Example 1.1 The linear system

x+ y = 1

x+ y = 3

has no solution. Since the lines represented by two lines are parallel Figure 1.1.

Example 1.2 The linear system

x+ y = 3

x− y = 1

has only one solution. Since the lines represented by two lines intersect at (2, 1) Figure 1.2.

Example 1.3 The linear system

x+ y = 3

2x+ 2y = 6

has infinitely many solutions. Since the lines represented by two linear equations coincide Figure 1.3.



1.2 Solution of a Non-homogeneous System of Linear Equations
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Figure 1.1: Example 1: Two lines are parallel.
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Figure 1.2: Example 2: Two lines are intersect at (2, 1).
X

1.2 Solution of a Non-homogeneous System of Linear Equations

1.3 Solution of a Homogeneous System of Linear Equations

K Chapter 1 Exercisek

1. Define the following:
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Chapter 1 Systems of Linear Equations

2x
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Figure 1.3: Example 3: Two lines coincide.

(a). Hermitian matrix
2. Determine the values of λ so that the following system has (i) unique solution, (ii) more than

one solution, and (iii) no solution.
x+ y − z = 1

2x+ 3y + λz = 3

x+ λy + 3z = 2

and hence find all the solutions.
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Chapter 2 Matrix Algebra

Introduction

h Introduction to Matrix
h Different Types of Matrices
h Algebra of Matrices

h Adjoin of Matrices
h Inverse of Matrices

2.1 Introduction to Matrix

Definition 2.1

♣

A matrix (over the field RorC) is a rectangular array of numbers (real or complex) enclosed by
pair of brackets i.e.

A =


a11 a12 . . . . . . a1n

a21 a22 . . . . . . a2n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

am1 am2 . . . . . . amn

 ,

the numbers aij in the matrix are called the entries or the element of the matrix. The matrix of
m rows and n columns is said to be of order ”m by n”, or m× n.

2.2 Different Types of Matrices

Definition 2.2

♣

A square matrix whose elements aij = 0 for i > j (i ≥ j) is called an (strictly) upper triangular
matrix.

Definition 2.3

♣

A square matrix whose elements aij = 0 for i < j (i ≤ j)is called a (strictly) lower triangular
matrix.

Definition 2.4

♣A square matrix A is said to be an idempotent matrix if A2 = A.



2.3 Transpose of Matrices

2.3 Transpose of Matrices

Definition 2.5

♣

If A = (aij)m×n is a matrix over the field R, then the matrix AT = (aji)n×m obtained from the
matrix A by writing its rows as column and columns as rows is called the transpose of A.

Example 2.1 Find the transpose of the matrix2 1 −1

3 2 3

1 4 2

 .

Solution Transpose of the given matrix is  2 3 1

1 2 4

−1 3 2

 .

Theorem 2.1

♥

Prove that
(AB)T = BTAT ,

where A and B are matrices.

Proof Let A = (aij)m×n and B = (bjk)n×p. Then

AT = ((aij)m×n)T = (aji)n×m

and
BT = ((bjk)n×p)

T = (bkj)p×n

ThusAB is am×pmatrix so that (AB)T is a p×mmatrix. AlsoBTAT is a p×mmatrix. Therefore,
(AB)T and BTAT have same dimensions.

Now let AB = (cik)m×p, where

cik =
n∑

j=1

aijbjk

That is (k, i)th element of (AB)T is
n∑

j=1

aijbjk =
n∑

j=1

aTjib
T
kj =

n∑
j=1

bTkja
T
ji

(k, i)th element of BTAT . That is, (AB)T = BTAT .

2.4 Conjugate Transpose of Matrices

If a = x+ iy then ā = x− iy.

6



Chapter 2 Matrix Algebra

Definition 2.6

♣

IfA = (aij)m×n is a matrix over the fieldC, then the matrix Ā = (āij)m×n is called the conjugate
of A.

Definition 2.7

♣

The conjugate of the transpose of a complex matrix A = ai×j is said to be conjugate transpose
of A and is denoted by A∗, that is

A∗ = (Ā)T = ĀT = (āj×i).

Definition 2.8

♣

If A = (aij)n×n is a square matrix over the complex field and A∗ = ĀT = A i.e. (aij)n×n =

(āji)n×n.

Theorem 2.2

♥

If A is a square matrix over the complex field then A can be expressed uniquely as the sum of a
Hermitian matrix, and a skew-Hermitian matrix.

Proof Let A∗ be the conjugate transpose of A. Then we can write

A =
1

2
(A+ A∗) +

1

2
(A− A∗) = P +Q. (2.1)

where P = 1
2

(A+ A∗) and Q = 1
2

(A− A∗). Now

P ∗ =
1

2
(A+ A∗)∗ =

1

2
(A∗ + (A∗)∗) =

1

2
(A∗ + A) = P

and
Q∗ =

1

2
(A− A∗)∗ =

1

2
(A∗ − (A∗)∗) =

1

2
(A∗ − A) = −Q

Thus P is Hermitian and Q is skew-Hermitian matrix. Hence, from (2.1), if A is a square matrix over
the complex field then A can be expressed as the sum of a Hermitian matrix, and a skew-Hermitian
matrix.

To prove the uniqueness of (2.1), let

A = R + S (2.2)

, where R 6= P is Hermitian and S 6= Q is skew-Hermitian. Now

A∗ = (R + S)∗ = R∗ + S∗ = R− S (2.3)

Adding (2.2) and (2.3)
R =

1

2
(A+ A∗) = P

and subtracting (2.3) from (2.2)
S =

1

2
(A− A∗) = Q.

Which establish the uniqueness of (2.1). Hence, the theorem is proved.
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2.5 Inverse of Matrices

2.5 Inverse of Matrices

Problem 2.1 Find the inverse of the following matrix

[
2 1

3 2

]
.

Solution The inverse of the given matrix is

[
2 −1

−3 2

]
.

Problem 2.2 Find the inverse of the following matrix−1 2 −3

2 1 0

4 −2 5

 ,
Solution Given

A =

−1 2 −3

2 1 0

4 −2 5

 ,
then

D = |A| =

∣∣∣∣∣∣∣
−1 2 −3

2 1 0

4 −2 5

∣∣∣∣∣∣∣ = −1(5 + 0)− 2(10− 0)− 3(−4− 4) = −5− 20 + 24 = −1 6= 0.

So, A is non-singular and hence A−1 exists.

Co-factor of −1 = A11 =

∣∣∣∣∣ 1 0

−2 5

∣∣∣∣∣ = 5

Co-factor of 2 = A12 = (−1)

∣∣∣∣∣2 0

4 5

∣∣∣∣∣ = −10

Co-factor of −3 = A13 =

∣∣∣∣∣2 1

4 −2

∣∣∣∣∣ = −8

Co-factor of 2 = A21 = (−1)

∣∣∣∣∣ 2 −3

−2 5

∣∣∣∣∣ = −4

Co-factor of 1 = A22 =

∣∣∣∣∣−1 −3

4 5

∣∣∣∣∣ = 7

Co-factor of 0 = A23 = (−1)

∣∣∣∣∣−1 2

4 −2

∣∣∣∣∣ = 6

Co-factor of 4 = A31 =

∣∣∣∣∣2 −3

1 0

∣∣∣∣∣ = 3

Co-factor of −2 = A32 = (−1)

∣∣∣∣∣−1 −3

2 0

∣∣∣∣∣ = −6

Co-factor of 5 = A33 =

∣∣∣∣∣−1 2

2 1

∣∣∣∣∣ = −5

8



Chapter 2 Matrix Algebra

Adj A =

 5 −10 −8

−4 7 6

3 −6 −5


T

=

 5 −4 3

−10 7 3

−8 7 −5



A−1 =
1

D
Adj A =

1

−1

 5 −4 3

−10 7 3

−8 7 −5

 =

−5 4 −3

10 −7 −3

8 −7 5

 .
Problem 2.3 Given that A =

[
2 1

3 2

]
, and B =

[
3 4

2 3

]
, verify that (AB)−1 = B−1A−1.

Solution Here,

AB =

[
2 1

3 2

][
3 4

2 3

]
=

[
6 + 2 8 + 3

9 + 4 12 + 6

]
=

[
8 11

13 18

]
.

(AB)−1 =

[
18 −11

−13 8

]
. (2.4)

Again

A−1 =

[
2 −1

−3 2

]
and

B−1 =

[
3 −4

−2 3

]
.

Hence,

B−1A−1 =

[
3 −4

−2 3

][
2 −1

−3 2

]
=

[
6 + 12 −3− 8

−4− 9 2 + 6

]
=

[
18 −11

−13 8

]
. (2.5)

From (2.4)-(2.5)
(AB)−1 = B−1A−1.

K Chapter 2 Exercisek

1. Define the following:
(a). Hermitian matrix
(b). Upper triangular matrix
(c). Transpose of a matrix
(d). Conjugate transpose of a matrix
(e). Idempotent matrix

2. Find the transpose of the matrix 2 1 −1

3 2 3

1 4 2

 .
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Chapter 2 Exercise

3. Prove that
(AB)T = BTAT ,

where A and B are matrices.
4. Prove that if A is a square matrix over the complex field then A can be expressed uniquely as

the sum of a Hermitian matrix, and a skew-Hermitian matrix.
5. Find the inverse of following matrices

(a).

[
2 1

3 2

]

(b).

−1 2 −3

2 1 0

4 −2 5

 ,
6. Given that A =

[
2 1

3 2

]
, and B =

[
3 4

2 3

]
, verify that (AB)−1 = B−1A−1.
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Chapter 3 Rank of A Matrix

Introduction

h Definitions h Rank of Matrices

3.1 Rank of Matrices

Definition 3.1

♣

The rank of a matrix A is the maximum number of linearly independent rows and column in the
matrix.

Problem 3.1 Find the rank of the matrix

 6 2 0 4

−2 −1 3 4

−1 −1 6 10

.

Solution We reduce the matrix to echelon form by the elementary row operation 6 2 0 4

−2 −1 3 4

−1 −1 6 10


∼

6 2 0 4

0 −1 9 16

0 −4 36 64

 [r′2 = 3r2 + r1, r
′
3 = 6r3 + r1]

∼

6 2 0 4

0 −1 9 16

0 0 0 0

 [r′3 = r3 − 4r2, ]

(3.1)

This matrix is row equivalent to the given matrix and is in the row echelon form, the echelon matrix
has two non-zero rows, the rank of the given matrix is 2.

Problem 3.2 Find the rank of the matrix


2 −1 3 4

0 3 4 1

2 3 7 5

2 5 11 6

.



Chapter 3 Exercise

Solution We reduce the matrix to echelon form by the elementary row operation
2 −1 3 4

0 3 4 1

2 3 7 5

2 5 11 6



∼


2 −1 3 4

0 3 4 1

0 4 4 1

0 2 4 1

 [r′3 = r3 − r1, r′4 = r4 − r3]

∼


2 −1 3 4

0 3 4 1

0 0 4 1

0 0 4 1

 [r′3 = 4r2 − 3r3, r
′
4 = 2r4 − r3]

∼


2 −1 3 4

0 3 4 1

0 0 4 1

0 0 0 0

 [r′4 = r4 − r3]

(3.2)

This matrix is row equivalent to the given matrix and is in the row echelon form, the echelon matrix
has two non-zero rows, the rank of the given matrix is 2.

K Chapter 3 Exercisek

1. Define following
(a). Rank.

2. Find the rank of the matrix

 6 2 0 4

−2 −1 3 4

−1 −1 6 10

.

3. Find the rank of the matrix


2 −1 3 4

0 3 4 1

2 3 7 5

2 5 11 6

.
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Chapter 4 Vector Spaces

Introduction

h Vector Space
h Subspace
h Linear Combination of Vectors

h Linear Dependence and Linear Indepen-
dence

4.1 Vector Space

Definition 4.1

♣

A vector space over an arbitrary field F is a nonempty set of vectors V , for which two operations
are prescribed,

1. Vector Addition: If u, v ∈ V then u+ v ∈ V .
2. Scalar Multiplication: If α ∈ F and u ∈ V then αu ∈ V .

The two operations are required to satisfy the axioms 4.1.

Axiom 4.1

♥

1. Addition is commutative: ∀u, v ∈ V, u+ v = v + u.

2. Addition is associative: ∀u, v, w ∈ V, (u+ v) + w = u+ (v + w).

3. Existence of O (zero vector): ∃O ∈ V such that ∀v ∈ V, v +O = O + v = v.
4. Existence of negative: v ∈ V, ∃ − v ∈ V , for which v + (−v) = (−v) + v = 0.

5. For each α ∈ F and ∀u, v ∈ V, α(u+ v) = αu+ αv.

6. For each α, β ∈ F , and ∀v ∈ V, (α + β)v = αv + βv.

7. For each α, β ∈ F , and ∀v ∈ V, (αβ)v = α (βv) .

8. For each v ∈ V, 1v = v, where 1 is the unite scalar and 1 ∈ F

Theorem 4.1

♥

Let V be the set of all functions from a non-empty set S into an arbitrary field F . For any
functions and any scalar α ∈ F . Let f + g ∈ V, ∀f, g ∈ V , and αf ∈ V, ∀α ∈ F, ∀f ∈ V
be defined as

(f + g) (x) = f(x) + g(x), ∀x ∈ S,

and
(αf)(x) = αf(x), ∀x ∈ S.

Prove that V is a vector space over the field F .

Proof Since S is non-empty, V is also non-empty. Now we have to show that all the axioms 4.1 of a
vector space hold.



4.2 Subspace

1. Let f, g ∈ V , Then

(f + g)(x) = f(x) + f(x) = g(x) + f(x) = (g + f)(x) for everyx ∈ S.

Thus f + g = g + f.

2. Let f, g, h ∈ V , then

((f + g) + h) (x) = (f + g) (x) + (h)(x) = (f(x) + g(x)) + h(x)

(f + (g + h)) (x) = f(x) + (g + h)(x) = f(x) + (g(x) + h(x))

for every x ∈ S. But f(x), g(x) and h(x) are scalars in the field F , where addition of scalar is
associative. Hence

(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x))

Accordingly, (f + g) + h = f + (g + h).
3. Let O denote the zero function, O(x) = 0, for every x ∈ S. Then for any function f ∈ V

(f +O)(x) = f(x) +O(x) = f(x) + 0 = f(x)

for every x ∈ S. Thus f +O = f and O is the zero vector in V .
4. For any function f ∈ V , let −f be the function defined by (−f)(x) = −f(x). Then

(f + (−f)) (x) = f(x) + (−f)(x) = f(x)− f(x) = O = O(x)

for every x ∈ S. Hence f + (−f) = O.
5. Let α ∈ F and f, g ∈ V . Then

(α(f + g)) (x) = α ((f + g)(x)) = α ((f(x) + g(x)) = αf(x) + αg(x)

for every x ∈ S. Hence α(f + g) = αf + αg.
6. Let α, β ∈ F and f ∈ V . Then

((α + β)f) (x) = (α + β) f(x) = αf(x) + βf(x) = (αf + βf) (x)

for every x ∈ S. Hence (α + β)f = αf + βf .
7. Let α, β ∈ F and f ∈ V . Then

((αβ)f) (x) = (αβ) f(x) = α (βf(x)) = (α(βf)) (x)

for every x ∈ S. Hence (αβ)f = α (βf).
8. Let f ∈ V , then for the unite scalar 1 ∈ F ,

(1f)(x) = 1f(x) = f(x)

for every x ∈ S. Hence, 1f = f .
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Chapter 4 Vector Spaces

4.2 Subspace

Definition 4.2 (Subspace)

♣

Let W be a non-empty subset of a vector V over the field F . We call W is a subspace of V if
and only if w is a vector space over the field F under the laws of vector addition and scalar
multiplication defined on V , or equivalently, W is a subspace of V whenever w1, w2 ∈ W , and
α, β ∈ F implies that αw1 + βw2 ∈ W .

Problem 4.1 Show that S = {(x1, x2, x3) ∈ R3, |x1 − x2 + x3 = 0} is a subspace of R3.

Solution For 0̄ ∈ R3, 0̄ = (0, 0, 0) ∈ S. Since 0− 0 + 0 = 0. Hence, T̄ is nonempty.

Suppose that ū = (x1, x2, x3), and v̄ = (x′1, x
′
2, x
′
3) are in T , then x1 − x2 + x3 = 0, and

x′1 − x′2 + x′3 = 0. Now for any scalars α, β ∈ R, we have

αū+ βv̄ = α(x1, x2, x3) + β(x′1, x
′
2, x
′
3)

= (αx1, αx2, αx3) + (βx′1, βx
′
2, βx

′
3)

= (αx1 + βx′1, αx2 + βx′2, αx3 + βx′3)

Also we have,

(αx1 + βx′1)− (αx2 + βx′2) + (αx3 + βx′3) = α(x1 − x2 + x3) + β(x′1 − x′2 + x′3)

= α0 + β0 = 0.

Thus αū+ βv̄ ∈ T and so T is a subspace of R3.

4.3 Linear Combination of vectors

Definition 4.3

♣

Let V be a vector space over the field F and let v1, v2, . . . , vn ∈ V then any vector v̄ ∈ V is
called a linear combination of v1, v2, . . . , vn if and only if there exist scalars α1, α2, . . . , αn ∈ F ,
such that v̄ = α1v1 + α2v2 + · · ·+ αnvn =

n∑
k=1

αkvk.

Problem 4.2 Write the vector u = (3, 9,−4,−2) as a linear combination of the vectors u1 =

(1,−2, 0, 3), u2 = (2, 3,−1, 0), and u3 = (2,−1, 2, 1).

Solution In order to show that u is a linear combination of u1, u2, and u3, there must be a scalars
α1, α2, and α3 such that

u = α1u1 + α2u2 + α3u3

(3, 9,−4,−2) = α1(1,−2, 0, 3) + α2(2, 3,−1, 0) + α3(2,−1, 2, 1)

= (α1 + 2α2 + 2α3,−2α1 + 3α2 − α3,−α2 + 2α3, 3α1 + α3)

15
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Equating the corresponding components and forming linear system we get,
α1 + 2α2 + 2α3 = 3

−2α1 + 3α2 − α3 = 9

− α2 + 2α3 = −4

3α1 + α3 = −2

Now reduce the elementary system to echelon form by the elementary row operations, we have,
α1 + 2α2 + 2α3 = 3

+ 7α2 + 3α3 = 15

− α2 + 2α3 = −4

− 6α2 − 5α3 = −11

[
r′2 = r2 + 2r1

r′4 = r4 − 3r1

]

α1 + 2α2 + 2α3 = 3

+ 7α2 + 3α3 = 15

+ 17α3 = −13

− 17α3 = 13

[
r′3 = 7r3 + r2

r′4 = r4 − 6r3

]

α1 + 2α2 + 2α3 = 3

+ 7α2 + 3α3 = 15

17α3 = −13

0 = 0

[
r′4 = r4 + r3

]

which provides α3 = −13
17

.

7α2 + 3
−13

17
= 15

α2 =
294

7 · 17
=

42

17

α1 = 3− 84

17
+

26

17
=

51− 84 + 26

17
=
−7

17
.

So, we can write
u =
−7

17
u1 +

42

17
u2 +

−13

17
u3.

4.4 Linear Dependence and Linear Independence

Definition 4.4

♣

Let V be a vector space over the field F . The vectors v1, v2, . . . , vn ∈ V are said to be linearly
dependent over F , or simply dependent if there exists a non-trivial linear combination of them
equal to the zero vector 0̄, i.e.

α1v1 + α2v2 + · · ·+ αnvn = 0̄, (4.1)

where αi 6= 0 for at least one i.

16



Chapter 4 Vector Spaces

Definition 4.5

♣

Let V be a vector space over the field F . The vectors v1, v2, . . . , vn ∈ V are said to be linearly
independent over F , or simply independent if the only linear combination of them equal to the
zero vector 0̄ is the trivial one, i.e.

α1v1 + α2v2 + · · ·+ αnvn = 0̄, (4.2)

if and only if α1 = α2 = · · · = αn = 0.

Problem 4.3 Show that the set of vectors

{(3, , 0, 1,−1), (2,−1, 0, 1), (1, 1, 1,−2)}

is linearly dependent.
Solution Form the matrix whose rows are the given vectors and reduce the matrix to row echelon
form by using elementary row operations3 0 1 −1

2 −1 0 1

1 1 1 −2


∼

1 1 1 −2

2 −1 0 1

3 0 1 −1

 [
r′1 = r3

r′3 = r1

]

∼

1 1 1 −2

0 −3 −2 5

0 −3 −2 5

 [
r′2 = r2 − 2r1

r′3 = r3 − 3r1

]

∼

1 1 1 −2

0 −3 −2 5

0 0 0 0

 [
r′3 = r3 − r2

]
This matrix is in row echelon form and has a zero row; hence the given vectors are linearly

dependent.

K Chapter 4 Exercisek
1. Define the following

(a). Vector space.
(b). Subspace.

2. Let V be the set of all functions from a non-empty set S into an arbitrary field F . For any
functions and any scalar α ∈ F . Let f + g ∈ V, ∀f, g ∈ V , and αf ∈ V, ∀α ∈ F, ∀f ∈ V
be defined as

(f + g) (x) = f(x) + g(x), ∀x ∈ S,

and
(αf)(x) = αf(x), ∀x ∈ S.

Prove that V is a vector space over the field F .

17
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3. Write the vector u = (3, 9,−4,−2) as a linear combination of the vectors u1 = (1,−2, 0, 3),
u2 = (2, 3,−1, 0), and u3 = (2,−1, 2, 1).

4. Show that S = {(x1, x2, x3) ∈ R3, |x1 − x2 + x3 = 0} is a subspace of R3.
5. Determine whether the following vectors in R3 are linearly independent or dependent.

(a). (1,3,2), (1,-7,-8), (2,1,-1);
(b). (1,2,3), (1,-3,2), (2,-1,5);
(c). (3,,0, 1, -1), (2, -1, 0, 1), (1, 1, 1, -2)

18



Chapter 5 Linear Transformation

Introduction

h Introduction to Linear Transformation h Properties of Linear Transformation

5.1 Introduction to Linear Transformation

Definition 5.1

♣

Let U and V be two vector spaces over the same vector field F . A linear transformation of T of
U into V , written as T : U → V , is a transformation of U into V such that

1. T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U ,
2. T (αu) = αT (u) for all u ∈ U and all α ∈ F .

5.2 Properties of Linear Transformation

Theorem 5.1

♥

If T : U |V is a linear transformation then
1. T (0) = 0.
2. T (−x) = −T (x), ∀x ∈ U .
3. T (x− y) = T (x)− T (y), ∀x, y ∈ U .

Proof
1. Let u be any vector in U . Since 0x = 0, we have

T (0) = T (0x) = 0T (x) = 0.

2. T (−x) = T ((−1)x) = (−1)T (x) = −T (x).
3. Finally, x− y = x+ (−1)y, thus

T (x− y) = T (x+ (−1)y) = T (x) + T ((−1)y) = T (x) + (−1)T (y) = T (x)− T (y). (5.1)

.

K Chapter 5 Exercisek

1. Prove that if T : U |V is a linear transformation then
(a). T (0) = 0.
(b). T (−x) = −T (x), ∀x ∈ U .
(c). T (x− y) = T (x)− T (y), ∀x, y ∈ U .





Chapter 6 Eigenvalues and Eigenvectors

Introduction

h Polynomials
h Eigenvalues and Eigenvectors
h Characteristic Polynomial and Charac-

teristic Equation
h Diagonalization
h Cayley-Hamiltonian Theorem

6.1 Polynomials

Definition 6.1

♣

Let F be a field and λ be an indeterminate, then an expression of type

f(λ) = a0λ
n + a1λ

n−1 + a2λ
n−2 + · · ·+ an−1λ+ an

where n is an integer (n > 0), a0, a1, a2, . . . , an ∈ F , and a0 6= 0 is known as the polynomial
of degree n.
Now if A is a square matrix over F , then we define

f(A) = a0A
n + a1A

n−1 + a2A
n−2 + · · ·+ an−1A+ anI

where I is the identity matrix.
In particular, we say that A is a root or zero of the polynomial f(λ) if f(A) = 0.

6.2 Eigenvalues and Eigenvectors

Definition 6.2

♣

If A is an n× n matrix, then there is a pair (λ, v) such that

Av = λv,

where λ is a scalar called an eigenvalue of the matrix, and v is the corresponding eigenvector
of A.

6.3 Characteristic Polynomial and Characteristic Equation

Definition 6.3

♣

The determinant of the characteristic matrix λI − A is |λI − A| is a polynomial in λ and is
called the characteristic polynomial of A.



6.4 Diagonalization

Theorem 6.1

♥Any square matrix A and its transpose A′ have the same eigenvalues.

Theorem 6.2

♥

If A be a non-singular matrix then the eigenvalues of A−1 are reciprocals of the eigenvalues of
A.

Theorem 6.3

♥If the eigenvalues of A are λ1, λ2, . . . , λn, then the eigenvalues of Ak are λk1, λk2, . . . , λkn.

Theorem 6.4

♥The eigenvalues of a real symmetric matrix are all real.

Theorem 6.5

♥The eigenvalues of a Hermitian matrix are all real.

6.4 Diagonalization

Definition 6.4

♣

A square matrix A is called diagonalizable if there exists an invertible matrix P such that
P−1AP is diagonal, the matrix P is said to diagonalize A.

6.5 Cayley-Hamiltonian Theorem

Definition 6.5

♣

Every square matrix satisfies its own characteristic equation, i.e. if the characteristic equation
of the nth order matrix A is

f(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an = 0,

then Cayley-Hamiltonian theorem states that

f(A) = An + a1A
n−1 + a2A

n−2 + · · ·+ an−1A+ anI = 0,

where I is the nth order unite matrix and 0 is the nth order zero matrix.

Problem 6.1 Let

A =

1 2 3

2 −1 1

3 1 1


.

1. Find all the eigenvalues of the matrix .

22



Chapter 6 Eigenvalues and Eigenvectors

2. Verify Cayley-Hamilton theorem for the matrix A.
3. Using Cayley-Hamilton theorem find the inverse of A.

Solution The characteristic matrix of A is

λI − A = λ

1 0 0

0 1 0

0 0 1

−
1 2 3

2 −1 1

3 1 1

 =

λ− 1 −2 −3

−2 λ+ 1 −1

−3 −1 λ− 1


The determinate of the matrix A is

|λI − A| =

∣∣∣∣∣∣∣
λ− 1 −2 −3

−2 λ+ 1 −1

−3 −1 λ− 1

∣∣∣∣∣∣∣
= (λ− 1)

(
λ2 − 1− 1

)
+ 2(−2λ+ 2− 3)− 3(2 + 3λ+ 3)

= (λ− 1)(λ2 − 2)− 4λ− 2− 9λ− 15

= λ3 − 2λ− λ2 + 2− 10λ− 17

= λ3 − λ2 − 15λ− 15.

Therefore, the characteristic equation of A is

λ3 − λ2 − 15λ− 15 = 0

by solving this we get the eigenvalues are, -2.567, -1.221, 4.788.

Now in order to verify Cayley-Hamilton theorem we have to show that

A3 − A2 − 15A− 15I = 0.

A2 =

1 2 3

2 −1 1

3 1 1


1 2 3

2 −1 1

3 1 1

 =

14 3 8

3 6 6

8 6 11



A3 = A2A =

14 3 8

3 6 6

8 6 11


1 2 3

2 −1 1

3 1 1

 =

44 33 53

33 6 21

53 21 41



A3 − A2 − 15A− 15I =

44 33 53

33 6 21

53 21 41

−
14 3 8

3 6 6

8 6 11

− 15

1 2 3

2 −1 1

3 1 1

− 15

1 0 0

0 1 0

0 0 1


=

44− 14− 15− 15 33− 3− 30− 0 53− 8− 45− 0

33− 3− 30− 0 6− 6 + 15− 15 21− 6− 15− 0

53− 8− 45− 0 21− 6− 15− 0 41− 11− 15− 15


=

0 0 0

0 0 0

0 0 0
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6.5 Cayley-Hamiltonian Theorem

Multiplying the above Cayley-Hamilton equation on both sides by A−1 we have

A2 − A− 15I − 15A−1 = 0

=⇒ A−1 =
1

15
A2 − 1

15
A− I

A−1 =
1

15
A2 − 1

15
A− I

=
1

15

14 3 8

3 6 6

8 6 11

− 1

15

1 2 3

2 −1 1

3 1 1

−
1 0 0

0 1 0

0 0 1


=

1

15

14− 1− 15 3− 2 8− 3

3− 2 6 + 1− 15 6− 1

8− 3 6− 1 11− 1− 15


=

1

15

−2 1 5

1 −8 5

5 5 −5


Problem 6.2 Given that

A =

 4 6 6

1 3 2

−1 −4 −3


1. Find eigenvalues of the matrix A.
2. Find eigenvectors of the matrix A for corresponding eigenvalues.

Solution The characteristic matrix of A is

λI − A = λ

1 0 0

0 1 0

0 0 1

−
 4 6 6

1 3 2

−1 −4 −3

 =

λ− 4 −6 −6

−1 λ− 3 −2

1 4 λ+ 3


The determinate of the matrix A is

|λI − A| =

∣∣∣∣∣∣∣
λ− 4 −6 −6

−1 λ− 3 −2

1 4 λ+ 3

∣∣∣∣∣∣∣
= (λ− 4)

(
λ2 − 9 + 8

)
+ 6(−λ− 3 + 2)− 6(−4− λ+ 3)

= (λ− 4)(λ2 − 1)− 6λ− 6 + 6 + 6λ

= (λ− 4)(λ2 − 1).

Therefore, the characteristic equation of A is

(λ− 4)(λ2 − 1) = 0

Which provides eigenvalues of A are λ = 4, λ = −1, and λ = 1.

Now by definition X =

x1x2
x3

 is an eigenvalues of A corresponding to the eigenvalue λ if and
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only if X is a non-trivial solution of

(λI − A)X = 0

=⇒

λ− 4 −6 −6

−1 λ− 3 −2

1 4 λ+ 3


x1x2
x3

 =

0

0

0

 (6.1)

If λ = 4 then equation (6.1) becomes 0 −6 −6

−1 1 −2

1 4 7


x1x2
x3

 =

0

0

0


∼

 1 4 7

−1 1 −2

0 −6 −6


x1x2
x3

 =

0

0

0

 [
r′1 = r3

r′3 = r1

]

∼

1 4 7

0 1 1

0 −6 −6


x1x2
x3

 =

0

0

0

 [
r′2 = 1

5
(r1 + r2)

]

∼

1 4 7

0 1 1

0 0 0


x1x2
x3

 =

0

0

0

 [
r′3 = (6r2 + r3)

]
In echelon form there are only two equations in three unknowns. Hence the system has a non-zero
solution. Here x3 is a free variable. Let x3 = −1, then x2 = 1, and x1 = 3.

Therefore,

 3

1

−1

 is an eigenvector corresponding to the eigenvalue λ = 4.

If λ = 1 then equation (6.1) becomes−3 −6 −6

−1 −2 −2

1 4 4


x1x2
x3

 =

0

0

0


∼

−3 −6 −6

0 0 0

0 2 2


x1x2
x3

 =

0

0

0

 [
r′2 = (r1 − 3r2)

r′3 = (r2 + r3)

]

∼

−3 0 0

0 0 0

0 1 1


x1x2
x3

 =

0

0

0

 [
r′1 = r1 + 3r3

r′3 = r3/2

]

∼

−3 0 0

0 1 1

0 0 0


x1x2
x3

 =

0

0

0

 [
r′2 = r3

r′3 = r2

]

In echelon form there are only two equations in three unknowns. Hence the system has a non-zero
solution. Here x3 is a free variable. Let x3 = −1, then x2 = 1, and x1 = 0.
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Therefore,

 0

1

−1

 is an eigenvector corresponding to the eigenvalue λ = 1.

If λ = −1 then equation (6.1) becomes−5 −6 −6

−1 −4 −2

1 4 2


x1x2
x3

 =

0

0

0


∼

−3 −6 −6

0 −14 −4

0 0 0


x1x2
x3

 =

0

0

0

 [
r′2 = 5r2 − r1
r′3 = r2 − r3

]

In echelon form there are only two equations in three unknowns. Hence the system has a non-zero
solution. Here x3 is a free variable. Let x3 = −7, then x2 = 2, and x1 = 6.

Therefore,

 6

2

−7

 is an eigenvector corresponding to the eigenvalue λ = −1.

K Chapter 6 Exercisek

1. State Cayley-Hamilton theorem for matrix.
2. Let

A =

1 2 3

2 −1 1

3 1 1


.
(a). Find all the eigenvalues of the matrix .
(b). Verify Cayley-Hamilton theorem for the matrix A.
(c). Using Cayley-Hamilton theorem find the inverse of A.

3. Find the the characteristic equation of the matrix

A =

 4 6 6

1 3 2

−1 −4 −3


4. Given that

A =

 4 6 6

1 3 2

−1 −4 −3


(a). Find eigenvalues of the matrix A.
(b). Find eigenvectors of the matrix A for corresponding eigenvalues.
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Chapter 7 Rectangular Co-ordinates

Introduction

h Distance between two points
h Direction Cosines of a Line

h Direction Ratios of a Line

7.1 Distance between two Points

Theorem 7.1

♥

Distance between two points P (x1, y1, z1), and Q(x2, y2, z2) is given by

PQ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (7.1)

Corollary 7.1

♥

Distance of P (x, y, z)from the origin is given by

OP =
√
x2 + y2 + z2. (7.2)

Problem 7.1 Find the distance between the points (5,−2, 3), (−4, 3, 7).
Solution The distance between the points is√

(−4− 5)2 + (3 + 2)2 + (7− 3)2 =
√

(−9)2 + (5)2 + (4)2 =
√

81 + 25 + 16 =
√

122.

7.2 Direction Cosine of a Line

Definition 7.1

♣

If a given line OP makes angles α, β, and γ, with the positive direction of axes of x, y, and z
respectively then cosα, cos β, and cos γ are the direction cosines (dcs) of the line OP , and are
generally denoted by the letters, l, m, and n respectively.

Problem 7.2 Find the direction cosines of the positive y axis.
Solution The y axis makes with the co-ordinates axes the angles 90◦, 0◦, and 90◦, and hence dcs are
(cos 90◦, cos 0◦, cos 90◦), or (0, 1, 0).

7.2.1 Direction Cosines of a Line Joining two Points

Direction ratios of a line passing through the points P (x1, y1, z1), and Q(x2, y2, z2), let

r =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (7.3)



7.3 Direction Ratios of a Line

then the direction cosines are

l =
x2 − x1

r
=
a

r
,

m =
y2 − y1
r

=
b

r
,

n =
z2 − z1
r

=
c

r
.

7.3 Direction Ratios of a Line

7.3.1 Direction Ratios of a Line Joining two Points

Direction ratios of a line passing through the points P (x1, y1, z1), and Q(x2, y2, z2) are x2 − x1,
y2 − y1, and z2 − z1.
Problem 7.3 Find the direction ratio and direction cosines of joining two points (2,−3, 1), and
(3,−4,−5).
Solution The direction ratios of a line passing through the points (2,−3, 1), and (3,−4,−5) are
3− 2 = 1, −4 + 3 = −1, and −5− 1 = −6. We also have

r =
√

12 + (−1)2 + (−6)2 =
√

38.

Hence, the dcs are 1/
√

38, −1/
√

38, and −6/
√

38.
Problem 7.4 If P , and Q are (2, 3,−6), and (3,−4, 5) respectively and O be the origin, find the
direction cosine of OP , and OQ.
Solution Here, OP =

√
22 + 32 + (−6)2 = 7. Hence direction cosines of OP are

l =
2− 0

7
=

2

7
,

m =
3− 0

7
=

3

7
,

n =
−6− 0

7
=
−6

7
.

Similarly, OQ =
√

32 + (−4)2 + 52 = 5
√

2. Hence direction cosines of OQ are

l =
3− 0

5
√

2
=

3

5
√

2
,

m =
−4− 0

5
√

2
=
−4

5
√

2
,

n =
5− 0

5
√

2
=

5

5
√

2
.

7.3.2 Condition of Perpendicularity of two Lines

If direction cosines of two lines are given, two lines are perpendicular to each other if

l1l2 +m1m2 + n1n2 = 0.

Also if direction ratios of two lines are given, then two lines are perpendicular to each other if

a1a2 + b1b2 + c1c2 = 0.
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7.3.3 Condition of Parallelism of two Lines

If direction cosines of two lines are given, two lines are parallel to each other if

l1 = l2,m1 = m2, n1 = n2.

Also if direction ratios of two lines are given, then two lines are parallel to each other if
a1
a2

=
b1
b2

=
c1
c2
.

Problem 7.5 Prove that the joining points (2, 3,−2), and (3, 1, 1) is parallel to the line joining joining
points (2, 1,−5), and (4,−3, 1).
Solution The direction ratios of a line passing through the points (2, 3,−2), and (3, 1, 1) are 3−2 = 1,
1− 3 = −2, and 1 + 2 = 3. Also the direction ratios of a line passing through the points (2, 1,−5),
and (4,−3, 1) are 4− 2 = 2, −3− 1 = −4, and 1 + 5 = 6. Now, two lines are parallel since

1

2
=
−2

−4
=

3

6
.

K Chapter 7 Exercisek

1. Find the distance between the points (5,−2, 3), (−4, 3, 7).
2. Find the direction cosines of the positive y axis.
3. Find the direction ratio and direction cosines of joining two points (2,−3, 1), and (3,−4,−5).
4. If P , and Q are (2, 3,−6), and (3,−4, 5) respectively and O be the origin, find the direction

cosine of OP , and OQ.
5. Prove that the joining points (2, 3,−2), and (3, 1, 1) is parallel to the line joining joining points

(2, 1,−5), and (4,−3, 1).
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Chapter 8 Equations of Planes

Introduction

h Introduction to Plane
h General Equation of Plane
h Equation of a Plane Passes Through

Planes

h Equation of a Plane Passes Through
Lines

h Distance from a Plane

8.1 Introduction to Plane

Definition 8.1

♣

A plane is a surface such that if any points are taken on it, the straight line joining them lies
wholly and the surface i.e. every points on the line joining the two points will be on the plane.

8.2 General Equation of Plane

Theorem 8.1

♥The general equation of a plane is given by ax+ by + cz + d = 0.

8.2.1 General Equation of a Plane Passes Through a Point

Corollary 8.1

♥

The general equation of a plane that passes through a given point (x1, y1, z1) is given by
a(x− x1) + b(y − y1) + c(z − z1) = 0.

Corollary 8.2

♥The general equation of a plane that passes through the origin is given by ax+ by + cz = 0.

8.2.2 General Equation of a Plane Passes Through three Points

Theorem 8.2
The plane that passes through three given points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) is given



8.2 General Equation of Plane

♥

by ∣∣∣∣∣∣∣∣∣
x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

∣∣∣∣∣∣∣∣∣ = 0.

Problem 8.1 Find the equation of the plane through the points, (2, 1,−3), (3,−1, 4), (7, 5, 6).

Solution The plane passes through the point (2, 1,−3) is given by

a(x− 2) + b(y − 1) + c(z + 3) = 0 (8.1)

Since (8.1) passes through (3,-1,4) and (7,5,6), we have

a(3− 2) + b(−1− 1) + c(4 + 3) = 0 =⇒ a− 2b+ 7c = 0, (8.2)

a(7− 2) + b(5− 1) + c(6 + 3) = 0 =⇒ 5a+ 4b+ 9c = 0. (8.3)

Solving (8.2)-(8.3) for a, b, and c by cross multiplication, we have
a

−18−28 = b
35−9 = c

4+10

=⇒ a
−46 = b

26
= c

14

=⇒ a
−23 = b

13
= c

7

Putting these value in (8.1), we get

−23(x− 2) + 13(y − 1) + 7(z + 3) = 0

−23x+ 13y + 7z = −46 + 13− 21 = −54.

Problem 8.2 Show that four points (0,-1,-1), (4,5,1), (3,9,4), and (-4,4,4) lie on a plane.
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Chapter 8 Equations of Planes

Solution Four points are co-planer, since∣∣∣∣∣∣∣∣∣
0 −1 −1 1

4 5 1 1

3 9 4 1

−4 4 4 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
0 0 0 1

4 6 2 1

3 10 5 1

−4 5 5 1

∣∣∣∣∣∣∣∣∣
[
c′2 = c2 + c4

c′3 = c3 + c4

]

= −

∣∣∣∣∣∣∣
4 6 2

3 10 5

−4 5 5

∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣
2 3 1

3 10 5

−4 5 5

∣∣∣∣∣∣∣
[
r′1 = r1/2

]

= −

∣∣∣∣∣∣∣
2 3 1

7 5 0

14 10 0

∣∣∣∣∣∣∣
[
r′3 = −r3 + 5r1

r′4 = −r4 + 5r1

]

= −(70− 70) = 0.

Hence, four points are co-planer.

8.3 Equation of a Plane Passes Through Planes

Theorem 8.3

♥

Any plane passes through the intersection of two planes a1x + b1y + c1z + d1 = 0, and
a2x+ b2y + c2z + d2 = 0 is a1x+ b1y + c1z + d1 + k (a2x+ b2y + c2z + d2) = 0.

Values of k can be found through any other condition.

Problem 8.3 Find the equation of the plane passing through the intersection of two planes x + 2y +

3z + 4 = 0, and 4x+ 3y + 2z + 1 = 0, and the point (1, 2, 3).

Solution Any plane passing through the intersection of two planes x + 2y + 3z + 4 = 0, and
4x+ 3y + 2z + 1 = 0, is

x+ 2y + 3z + 4 + k (4x+ 3y + 2z + 1) = 0. (8.4)

Since, the plane (8.4) passes through (1, 2, 3) then we have,

1 + 2 · 2 + 3 · 3 + 4 + k (4 + 3 · 2 + 2 · 3 + 1) = 0

=⇒ k =
−18

17
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8.4 Equation of a Plane Passes Through Lines

Now, putting value of k in (8.4), we get the desire equation

x+ 2y + 3z + 4− 18

17
(4x+ 3y + 2z + 1) = 0

=⇒ 17x+ 34y + 51z + 68− 72x− 54y − 36z − 18 = 0

=⇒ 55x+ 20y − 15z − 50 = 0

=⇒ 11x+ 4y − 3z = 10

Problem 8.4 Find the equation of the plane through the points (2, 2, 1), and (9, 3, 6), and perpendicular
to the plane 2x+ 6y + 6z = 9.
Solution Any plane passes through the point (2, 2, 1) is

a(x− 2) + b(y − 2) + c(z − 1) = 0. (8.5)

Since it passes through (9, 3, 6), then we have,

a(9− 2) + b(3− 2) + c(6− 1) = 0

=⇒ 7a+ b+ 5c = 0. (8.6)

The plane (8.5) is perpendicular to 2x+ 6y + 6z = 9, hence

2a+ 6b+ 6c = 0. (8.7)

From (8.6)-(8.7) by cross multiplication.
a

6−30 = b
10−42 = c

42−2

=⇒ a
−24 = b

−32 = c
40

=⇒ a
3

= b
4

= c
−5

Putting the values of a, b, c in (8.5), we get the required equation

3(x− 2) + 4(y − 2)− 5(z − 1) = 0

=⇒ 3x+ 4y − 5z = 9.

8.4 Equation of a Plane Passes Through Lines

Problem 8.5 Find the equation of the plane passing through the line x−2
3

= y−3
5

= z
7
, and the point

(1,−2, 3).
Solution Any plane passes through the given line is

5(x− 2)− 3(y − 3) = k (7(y − 3)− 5z) . (8.8)

Now this plane also passes through the point (1,−2, 3) then we have,

k =
5(1− 2)− 3(−2− 3)

7(−2− 3)− 5(3)
=

10

−50
=
−1

5
.

Putting this value of k in (8.8)

5 (5(x− 2)− 3(y − 3)) + 7(y − 3)− 5z = 0

=⇒ 25x− 8y − 5z − 26 = 0.

Problem 8.6 Find the equation of the plane passing through the point (1,−2, 1) and perpendicular to
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Chapter 8 Equations of Planes

the line with direction ratios 2, 3, 5.
Solution Any plane passes through the point (1,−2, 1) is

a(x− 1) + b(y + 2) + c(z − 1) = 0. (8.9)

This plane is also perpendicular to the line with direction ratios 2, 3, 5. Hence,
3a − 2b = 0

5b − 3c = 0

Solving for a, b, and c, by cross multiplication, provide us
a

6− 0
=

b

0 + 9
=

c

15
a

2
=
b

3
=
c

5
Putting the values of a, b, and c in (8.9), we get the required equation

2(x− 1) + 3(y + 2) + 5(z − 1) = 0

2x+ 3y + 5z = 1. (8.10)

8.5 Distance from a Plane

Problem 8.7 Find the distance of the points (2,−1, 5) from the plane 3x− 2y + 6z + 8 = 0.
Solution The equation of the plane is 3x− 2y + 6z + 8 = 0. Its distance from (2,−1, 5) is

3(2)− 2(−1) + 6(5) + 8√
32 + 22 + 62

=
46

7
.

Problem 8.8 Find the distance of the point (2, 0, 1), and (3,−3, 2) from the plane x − 2y + z = 6,
and find whether the two points lie on the same side or opposite sides of the plane.
Solution The equation of the plane is x− 2y + z − 6 = 0. Its distance from (2, 0, 1) is

2− 2(0) + 1− 6√
12 + 22 + 12

=
−3√

6
.

Its distance from (3,−3, 2) is
3− 2(−3) + 2− 6√

12 + 22 + 12
=

5√
6
.

The two results are of opposite signs. Therefore the two points lie on opposite side of the plane.

K Chapter 8 Exercisek

1. Find the equation of the plane through the points, (2, 1,−3), (3,−1, 4), (7, 5, 6).
2. Show that the four points (0,-1,-1), (4,5,1), (3,9,4), and (-4,4,4) lie on a plane.
3. Find the equation of the plane passing through the intersection of two planes x+2y+3z+4 = 0,

and 4x+ 3y + 2z + 1 = 0, and the point (1, 2, 3).
4. Find the equation of the plane passing through the line x−2

3
= y−3

5
= z

7
, and the point (1,−2, 3).

5. Find the equation of the plane passing through the point (1,−2, 1) and perpendicular to the line
with direction ratios 2, 3, 5.
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Chapter 8 Exercise

6. Find the distance of the points (2,−1, 5) from the plane 3x− 2y + 6z + 8 = 0.
7. Find the distance of the point (2, 0, 1), and (3,−3, 2) from the plane x− 2y + z = 6, and find

whether the two points lie on the same side or opposite sides of the plane.
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Chapter 9 Equations of Straight Lines

Introduction

h General Equations of Straight Lines
h Symmetric form Equations of Straight

Lines

h Two Lines are Perpendicular
h Two Lines are Parallel
h Shortest Distance between two Lines

9.1 General Equations of Straight Lines

a1x+ b1y + c1z + d1 = 0 = a2x+ b2y + c2z + d2 (9.1)

9.2 Symmetric form Equations of Straight Lines

The equation of a straight line passing through point (x1, y1, z1) and in a given direction is given
by

x− x1
l

=
y − y1
m

=
z − z1
n

= r (9.2)

If direction ration is given then (9.2) can be written as

x− x1
a

=
y − y1
b

=
z − z1
c

(9.3)

The equation of a straight line passing through two points (x1, y1, z1) and (x2, y2, z2) is given by
x− x1
x1 − x2

=
y − y1
y1 − y2

=
z − z1
z1 − z2

. (9.4)

9.3 Two Lines are Perpendicular

Two lines are perpendicular if

l1l2 +m1m2 + n1n2 = 0, (9.5)

or

a1a2 + b1b2 + c1c2 = 0. (9.6)

Problem 9.1 Show that the lines 3x − 2y + 13 = 0, y + 3z − 26 = 0, and x+4
5

= y−1
−3 = z−3

1
are

perpendicular.
Solution The direction ratios of the first line are

(-6,0), (0-9), (3-0); or, -6, -9, 3; or -2, -3, 1.
The direction ratios of second line are 5, -3, 1.
Now for perpendicular a1a2 +b1b2 +c1c2 is equal to zero, but (−2)(5)+(−3)(−3)+(1)(1) = 0.



9.4 Two Lines are Parallel

0 1 3 0 1

3 -2 0 3 -2

Hence, the lines are perpendicular.
Problem 9.2 Find the equations of line perpendicular to both the line x−1

1
= y−1

2
= z+2

3
, x+2

2
= y−5
−1 =

z+3
2

and passing through their intersection.
Solution Let

x− 1

1
=
y − 1

2
=
z + 2

3
= r1

=⇒ x = r1 + 1, y = 2r1 + 1, z = 3r1 − 2. (9.7)

Also let
x+ 2

2
=
y − 5

−1
=
z + 3

2
= r2

=⇒ x = 2r2 − 2, y = −r2 + 5, z = 2r2 − 3. (9.8)

If the lines meet then

r1 + 1 = 2r2 − 2, 2r1 + 2 = −r2 + 5, 3r1 − 2 = 2r2 − 3

=⇒ r1 = 1, r2 = 2.

Hence, the point of intersection of the lines is (2,3,1).
Let l,m, n be the direction ratios of the given lines then

l + 2m+ 3n = 0 (9.9)

2l −m+ 2n = 0. (9.10)

Solving,
l

7
=
m

4
=

n

−5
.

Hence, equation of the line is
x− 2

7
=
y − 3

4
=
z − 1

−5
.

9.4 Two Lines are Parallel

Two lines are parallel if
l1
l2

=
m1

m2

=
n1

n2

, (9.11)

or
a1
a2

=
b1
b2

=
c1
c2
. (9.12)
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Chapter 9 Equations of Straight Lines

9.5 Shortest Distance between two Lines

Problem 9.3 Find the shortest distance between the lines
x− 3

3
=
y − 8

−1
=
z − 3

1
,

x+ 3

−3
=
y + 7

2
=
z − 6

4
.

Find also the equation and the points in which it meets the given lines.
Solution Let

x− 3

3
=
y − 8

−1
=
z − 3

1
= r1

=⇒ x = 3r1 + 3, y = −r1 + 8, z = r1 + 3. (9.13)

Also let
x+ 3

−3
=
y + 7

2
=
z − 6

4
= r2

=⇒ x = −3r2 − 3, y = 2r2 − 7, z = 4r2 + 6. (9.14)

Let L(3r1 + 3,−r1 + 8, r1 + 3) and M(−3r2− 3, 2r2− 7, 4r2 + 6) be any two points of the given
line then the directions ratios of the line LM are

3r1 + 3r2 + 6,−r1 − 2r2 + 15, r1 − 4r2 − 3 (9.15)

If the line is perpendicular to both the lines, then we have

3(3r1 + 3r2 + 6)− 1(−r1 − 2r2 + 15) + 1(r1 − 4r2 − 3) = 0

=⇒ 11r1 + 7r2 = 0 (9.16)

Similarly,

−3(3r1 + 3r2 + 6) + 2(−r1 − 2r2 + 15) + 4(r1 − 4r2 − 3) = 0

=⇒ 7r1 + 29r2 = 0 (9.17)

Solving (9.16)-(9.17), we get

r1 = r2 = 0

Hence the points L, and M are respectively (3, 8, 3), and (−3,−7, 6). The equation of the line
LM , which is SD is given by

x− 3

3 + 3
=
y − 8

8 + 7
=
z − 3

3− 6

=⇒ x− 3

6
=
y − 8

15
=
z − 3

−3

=⇒ x− 3

2
=
y − 8

5
=
z − 3

−1
The length of S.D. between L and M

=
√

(3 + 3)2 + (8 + 7)2 + (3− 6)2 =
√

62 + 152 + 32 = 3
√

30.

Problem 9.4 Find the equation to the planes through the points (1, 0,−1) and the lines 4x− y− 13 =

0 = 3y− 4z− 1 and y− 2z+ 2 = 0 = x− 5 and show that the equations to the line through the given
point which intersects the two given lines can be written as x = y + 1 = z + 2.
Solution Any plane through 4x− y − 13 = 0 = 3y − 4z − 1 is given by

4x− y − 13 + k1(3y − 4z − 1) = 0.

39



Chapter 9 Exercise

These plane passes through the points (1, 0,−1),

k1 =
−4 + 13

4− 1
= 3.

Hence, the given equation is

4x− y − 13 + 3(3y − 4z − 1) = 0

=⇒ 4x+ 8y − 12z − 16 = 0

=⇒ x+ 2y − 3z − 4 = 0. (9.18)

Again any plane through y − 2z + 2 = 0 = x− 5 is given by

y − 2z + 2 + k2(x− 5) = 0.

These plane passes through the points (1, 0,−1),

k2 =
−2− 2

1− 5
= 1.

Hence, the given equation is

y − 2z + 2 + (x− 5) = 0

=⇒ x+ y − 2z − 3 = 0. (9.19)

Subtracting (9.19) from (9.18), we have

y − z − 1 = 0

=⇒ y + 1 = z + 2 (9.20)

Putting the value of z in (9.19)

x+ 2y − 3(y − 1)− 4 = 0

=⇒ x− y − 1 = 0

=⇒ x = y + 1 (9.21)

From (9.20)-(9.21), we have

x = y + 1 = z + 2. (9.22)

K Chapter 9 Exercisek
1. Write the condition for which two straight lines are perpendicular to each other.
2. Show that the lines 3x−2y+13 = 0, y+3z−26 = 0, and x+4

5
= y−1
−3 = z−3

1
are perpendicular.

3. Find the equations of line perpendicular to both the line x−1
1

= y−1
2

= z+2
3

, x+2
2

= y−5
−1 = z+3

2

and passing through their intersection.
4. Find the shortest distance between the lines

x− 3

3
=
y − 8

−1
=
z − 3

1
,

x+ 3

−3
=
y + 7

2
=
z − 6

4
.

Find also the equation and the points in which it meets the given lines.
5. Find the shortest distance between the lines x+ a = 2y = −12z, and x = y + 2a = 6z − 6a.
6. Find the equation to the planes through the points (1, 0,−1) and the lines 4x − y − 13 = 0 =

3y − 4z − 1 and y − 2z + 2 = 0 = x − 5 and show that the equations to the line through the
given point which intersects the two given lines can be written as x = y + 1 = z + 2.
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Chapter 10 Harmonic Functions

Introduction

h Laplacian Equation in 2D
h Laplacian Equation in 3D

h Harmonic Function

10.1 Laplacian Equation in 2D

Definition 10.1

♣

An equation having the second-order partial derivatives of the form

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0 (10.1)

is called the Laplace equation; where ∇2 is called the Laplacian operator, and ∇2u is called
the Laplacian of u.

10.1.1 Polar form of Laplacian Equation

In polar form Laplacian equation can be written as,

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (10.2)

10.2 Laplacian Equation in 3D

Also similarly Laplacian equation in 3D can be defined

Definition 10.2

♣

An equation having the second-order partial derivatives of the form

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0. (10.3)

is called the Laplace equation in 3D; where ∇2 is called the Laplacian operator, and ∇2u is
called the Laplacian of u.

10.2.1 Cylindrical form of Laplacian Equation

In cylindrical coordinates Laplacian equation can be written as

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
= 0. (10.4)



10.3 Harmonic Function

10.2.2 Spherical form of Laplacian Equation

In spherical coordinates Laplacian equation can be written as

∇2u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin2 φ

∂2u

∂θ2
+

cotφ

r2
∂u

∂φ
+

1

r2
∂2u

∂φ2
= 0. (10.5)

10.3 Harmonic Function

Definition 10.3

♣

A function u(x, y) is known as harmonic function when it is twice continuously differentiable
and also satisfies the Laplace equation i.e.

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0. (10.6)

10.3.1 Properties of Harmonic Function

Properties of Harmonic function are given below
1. If f(z) = u(x, y) + iv(x, y) is analytic on a region A then both u and v are harmonic functions

on A.
2. If u(x, y) is harmonic on a connected region A, then u is the real part of an analytic function
f(z) = u(x, y) + iv(x, y).

3. If u and v are the real and imaginary parts of an analytic function, then we say u and v are
harmonic conjugates.

4. The sum of two harmonic functions is a harmonic function.
5. An arbitrary pair of harmonic functions u and v need not be conjugated unless u + iv is an

analytic function.

K Chapter 10 Exercisek

1. Define following
(a). Harmonic function

2. Write the properties of harmonic function.
3. Write the Laplacian equation in Cartesian form.
4. Write the Laplacian equation in polar form.
5. Write the Laplacian equation in cylindrical form.
6. Write the Laplacian equation in spherical form.
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