30005

QUESTION PAPER SERIES CODE

Д

Test Centre :	_
Roll No. :	_
Name of the Candidate :	

SAU

Entrance Test for M.Sc. (Applied Mathematics), 2016

[PROGRAMME CODE : MAM]

Question Paper

Time: 3 hours

Maximum Marks: 100

INSTRUCTIONS FOR CANDIDATES

Please read carefully the following instructions before attempting the Question Paper :

- (i) Write your Name, Roll Number and Name of the Test Centre in the space provided for the purpose on the top of this Question Paper and on the OMR Sheet.
- (ii) This Question Paper has Two Parts: Part-A and Part-B.
- (iii) Part-A (Objective-type) has 40 questions of 1 mark each. All questions are compulsory.
- (iv) Part-B (Objective-type) has 60 questions of 1 mark each. All questions are compulsory.
- (v) A wrong answer will lead to the deduction of one-fourth $(\frac{1}{4})$ of the marks assigned to that question.
- (vi) Symbols have their usual meanings.
- (vii) Please darken the appropriate circle of 'Question Paper Series Code' and 'Programme Code' on the OMR Sheet in the space provided.
- (viii) All questions should be answered on the OMR Sheet.
- (ix) Choose the one correct option out of the 4 options given for each question.
- (x) Answers written inside the Question Paper will NOT be evaluated.
- (xi) Mobile Phones are NOT allowed.
- (xii) Pages at the end of the Question Paper have been provided for Rough Work.
- (xiii) Return the Question Paper and the OMR Sheet to the Invigilator at the end of the Entrance Test.
- (xiv) DO NOT FOLD THE OMR SHEET.

INSTRUCTIONS FOR MARKING ANSWERS ON THE 'OMR SHEET' Use only BLUE/BLACK Ballpoint Pen

1. Please ensure that you have darkened the appropriate circle of 'Question Paper Series Code' and 'Programme Code' on the OMR Sheet in the space provided.

Example:

Qu	estion	Paper	Series	Code	
Write Q	uestion	Paper	Series	Code A or ppropriate	B circle
	A or	В			

Programme Code
Write Programme Code in the box and
darken the appropriate circle.

Write F	rogra				
MEC	0	MAM	•	PCS	0
MSO	0	MLS	0	PBT	0
MIR	0	PEC	0	PAM	0
MCS	0	PSO	0	PLS	0
MBT	0	PIR	0		

- 2. Use only a Blue or Black Ballpoint Pen to darken the circle. Do not use a pencil to darken the circle for the Final Answer.
- Please darken the whole circle.
- 4. Darken ONLY ONE CIRCLE for each question as shown below in the example :

Wrong	Wrong	Wrong	Wrong	Correct
● ⓑ ⓒ ●	\$ 000	Ø 6 6	⊕ ⊕ ⊙ 	@ b @ •

- 5. Once marked, no change in the answer is possible.
- 6. Please do not make any stray marks on the OMR Sheet.
- 7. Please do not do any rough work on the OMR Sheet.
- 8. Mark your answer only in the appropriate circle against the number corresponding to the question.
- 9. A wrong answer will lead to the deduction of one-fourth $(\frac{1}{4})$ of the marks assigned to that question.
- 10. Write your six-digit Roll Number in the small boxes provided for the purpose; and also darken the appropriate circle corresponding to respective digits of your Roll Number as shown in the example below:

 Example:

ROLL NUMBER

-										
L	1	3	5	7	2	0				
Ľ	•	1	1	1	1	1				
1	<u>2</u>)	2	2	②		2				
K	<u>3</u>		3	3	3	3				
	<u>૱</u>	(<u>a</u>	④	(4)	④	4				
	<u>5)</u>	(5)		⑤	(3)	(5)				
	<u>6)</u>	6	(6)	6	6	6				
	<u>7)</u>	0	7		7	7				
[8)	8	8	8	8	(8)				
	9)	9	9	9	9	9				
	<u>o</u>	(0)	0	0	<u></u>					

1. Which of the following sets is not open in \mathbb{R} ?

- (a) The set R of real numbers
- (b) $(1, 3] \cup [2, 4)$
- (c) $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$
- (d) The empty set \emptyset

2. Consider the following statements:

- (i) Arbitrary union of open sets is open.
- (ii) Finite union of open sets is open.
- (iii) Arbitrary intersection of closed sets is closed.
- (iv) Finite intersection of closed sets is closed.

Then

- (a) all the statements are correct
- (b) only (ii) and (iv) are correct
- (c) only (i), (ii) and (iv) are correct
- (d) only (ii), (iii) and (iv) are correct

3. If $f(x) = \sqrt{4-x}$ and $g(x) = x^2$, then the domain of the composition function $f \circ g$ is

3

- (a) $(-\infty, 4]$
- (b) (-∞, 2]
- (c) [-2, 2]
- (d) [-4, 4]

4. $\lim_{x\to 0} \frac{|x|}{x}$ equals

- (a) 1
- (b) -1
- (c) 0

/7-A

(d) Does not exist

- 5. Consider $A = \sum_{n=0}^{\infty} a^n$, $a \in \mathbb{R}$. Then A =
 - (a) $\frac{1}{1-a}$
 - (b) $\frac{a}{1-a}$
 - (c) $\frac{1}{a-1}$
 - (d) does not exist always
- 6. Which of the following functions is uniformly continuous on [0, ∞)?
 - (a) $\sin x$
 - (b) $\sin x^2$
 - (c) $\sin \frac{1}{x}$, when $x \neq 0$ and $\sin 0 = 0$
 - (d) None of the above
- 7. The minimum value of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ is attained at the point
 - (a) $\left(-\frac{2}{3}, \frac{4}{3}\right)$
 - (b) $\left(\frac{2}{3}, -\frac{4}{3}\right)$
 - (c) $\left(\frac{1}{3}, \frac{4}{3}\right)$
 - (d) $\left(\frac{4}{3}, \frac{1}{3}\right)$
- 8. For the function $f(x, y) = e^{x^y}$, $\frac{\partial^2 f}{\partial x^2} =$
 - (a) $ye^{x^y}[yx^{y-1}+(y-1)x^{y-2}]$
 - (b) $ye^{x^y} \{yx^{(y-1)^2} + (y-1)x^{y-2}\}$
 - (c) $ye^{x^y}[yx^{2y-2}+(y-1)x^{y-2}]$
 - (d) $ye^{x^y}[yx^{2y-1}+(y-1)x^{y-2}]$

9. If $\vec{A} = x^2 z^2 \hat{i} - 2y^2 z^2 \hat{j} + xy^2 z \hat{k}$, then the value of $\nabla \cdot \vec{A}$ at the point $\{1, -1, 1\}$ is

- (a) -7
- (b) -1
- (c) 1
- (d) 7

10. If $\{x_n\}$ and $\{y_n\}$ be two sequences such that $x_n + y_n \to 0$ as $n \to 0$, then

- (a) both $\{x_n\}$ and $\{y_n\}$ must be convergent
- (b) both $\{x_n\}$ and $\{y_n\}$ must be bounded
- (c) at least one of $\{x_n\}$ and $\{y_n\}$ must be either convergent or bounded
- (d) both $\{x_n\}$ and $\{y_n\}$ can be divergent

11. If $M = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ and $V = \{Mx^T : x \in \mathbb{R}^3\}$, then dim V is

- (a) 0
- (b) 1
- (c) 2
- (d) 3

12. If $A^2 - A = 0$, where A is a 9×9 matrix, then

- (a) A must be a zero matrix
- (b) A is an identity matrix
- (c) rank of A is 1 or 0
- (d) A is diagonalizable

/7-A		6
	(d)	6
	(c)	5
	(b)	3
	(a)	1
16.	The	order of 5 in the group {0, 1, 2, 3, 4, 5}, the composition being addition modulo 6, is
	(d)	(1 2 3 5 6 4)
	(c)	(1 3 4 2 5 6)
	(b)	(124365)
15.	(a)	value of (1 2 3) (5 6 4 1) is (1 2 3 4 5 6)
15.	The	e value of (1 2 3) (5 6 4 1) :-
	(d)	the minimal polynomial and the characteristic polynomial of A are not equal
	(c)	A is nilpotent
	(b)	A is idempotent
	(a)	A is not diagonalizable
14.	If A	A is 5×5 matrix, all of whose entries are 1, then
	(d)	-1, <i>i</i>
	(c)	-i, i
	(b)	1, - <i>i</i>
	(a)	1, -1

13. If A is a unitary matrix, then eigenvalues of A are

	(a)	group	
	(p)	abelian group	
	(c)	ring	
	(d)	field	
18.	If f elem	be an isomorphic mapping of a group G into a group G' , then the order nent a of G is equal to the order of	of an
	(a)	f(a-1)	
	(b)	identity	
	(c)	f(a)	
	(d)	0	
19.	If p	σ is a prime number and σ is any integer, then σ^p	
	(a)	$\equiv a \pmod{p}$	
	(p)	$\equiv p \pmod{a}$	
	(c)	$\equiv 1 \pmod{p}$	
	(d)	$\equiv 1 \pmod{a}$	
20.	То	a permutation group, every finite group G is	
	(a)	homomorphic	
	(b)	isomorphic	
	(c)) identical	
	(đ) equal	
/7-£	7	7	{ P.T.O.

17. If a, b are any two elements of a group G, then $(ab)^2 = a^2b^2$ if and only if G is a/an

21. The system of initial value problem

$$\frac{dx}{dt} = 3x + 8y$$
, $\frac{dy}{dt} = -x - 3y$, $x(0) = 6$, $y(0) = -2$

possesses the solution

(a)
$$x = 4e^t + 2e^{-t}$$
, $y = -e^t - e^{-t}$

(b)
$$x = 4e^t + 200e^{-t}$$
, $y = e^t - e^{-t}$

(c)
$$x = e^t + 5e^{-t}$$
, $y = e^t - e^{-t}$

(d)
$$x = 4e^{5t} + 2e^{-t}, y = -e^{6t} - e^{-t}$$

22. The solution of homogeneous PDE

$$\frac{\partial^3 u}{\partial x^3} - 2 \frac{\partial^3 u}{\partial x^2 \partial y} - \frac{\partial^3 u}{\partial x \partial y^2} + 2 \frac{\partial^3 u}{\partial y^3} = 0$$

is written as

(a)
$$\psi_1(y-x) + \psi_2(y^3-x^3) + \psi_3(y+2x)$$

(b)
$$\psi_1(2y+x) + \psi_2(y-9x) + \psi_3(8y+2x)$$

(c)
$$\psi_1(y+3x) + \psi_2(y-2x) + \psi_3(5y+2x)$$

(d)
$$\Psi_1(y+x) + \Psi_2(y-x) + \Psi_3(y+2x)$$

23. The Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$ in cylindrical polar coordinate is represented

bу

(a)
$$\frac{\partial^2 u}{\partial r^2} + \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(b)
$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(c)
$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(d)
$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} - \frac{\partial^2 u}{\partial z^2} = 0$$

24. The slope at any point (x, y) of a curve is 1 + y/x. If the curve passes through the point (1, 1), then the equation of the curve is

(a)
$$y = x(1 + \ln(x))$$

(b)
$$y = x(1 + \sin(x))$$

(c)
$$y = x(1 + \cos(x))$$

(d)
$$y = x(1 + \tan(x))$$

- 25. The solution of the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$, y(0) = -1, y'(0) = 0 is expressed as
 - (a) $e^{2x} e^x$
 - (b) $e^{2x} 2e^x$
 - (c) $e^{2x} 2e^{-x}$
 - (d) $e^{8x} 2e^{-x}$
- **26.** The solution of the PDE $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(x, 0) = 4e^{-x}$ is
 - (a) $4\exp(2x-y)$
 - (b) $4 \cosh\left(-\frac{1}{2}(2x-3y)\right)$
 - (c) $4\sin\left(-\frac{1}{2}(2x-3y)\right)$
 - (d) $4\exp\left(-\frac{1}{2}(2x-3y)\right)$
- 27. The basis of the solution space to the differential equation

$$x^{2} \frac{d^{2}u}{dx^{2}} + x \frac{du}{dx} - u = 0, (x \neq 0)$$

- is
- (a) $\left\{x, \frac{1}{x}\right\}$
- (b) $\left\{1, \frac{1}{x}\right\}$
- (c) {1, x}
- (d) $\{1, x, x^2\}$
- 28. The value of β so that the differential equation $(x^3 + y)dx + (\beta x + y^3)dy = 0$ is exact
 - (a) 1
 - (b) 2
 - (c) -1
 - (d) 3

29.	The	e most accurate value of $f(x) = x(\sqrt{x+1} - \sqrt{x})$ to six significant digits at $x = 500$ is
	(a)	0
	(b)	11-1500
	(c)	1 I·1648
	(d)	11·1748
30.	Usi	ng Newton's method, the value of $\sqrt{5}$ at 1st iteration using starting value $x_0=2$ is
	(a)	2.24
	(b)	2.25
	(c)	2·26
	(d)	2·27
31.	The sati	coefficient of $(x+2)(x+1)$ in Newton's interpolating polynomial for the function sfying the conditions $f(-2) = -15$, $f(-1) = -4$, $f(1) = 0$, $f(3) = 20$ is
	(a)	-3
	(b)	3
	(c)	-4
	(d)	0
32.	The $f(x)$	value of $f[-3, -2, 0, 4, 5]$ where [,] denotes Newton's divided difference and $= 3x^4 - 4x^3 + 3x - 2$ is
	(a)	o
	(b)	1
	(c)	2
	(d)	3
33.	Two that	numbers a and b are chosen at random from the set $\{1, 2, 3, \dots, 3n\}$. The probability $a^3 + b^3$ is divisible by 3, is
	(a)	$\frac{1}{2}$
	(b)	$\frac{1}{4}$

- (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{6}$

- **34.** If A and B are two independent events such that $P(A^c \cap B) = \frac{2}{15}$ and $P(A \cap B^c) = \frac{1}{6}$, then P(B) is
 - (a) $\frac{1}{5}$ or $\frac{4}{5}$
 - (b) $\frac{1}{6}$ or $\frac{4}{5}$
 - (c) $\frac{1}{6}$ or $\frac{5}{6}$
 - (d) $\frac{1}{5}$ or $\frac{5}{6}$
- 35. If $\frac{1-3p}{2}$, $\frac{1+4p}{3}$, $\frac{1+p}{6}$ are the probabilities of three mutually exclusive and exhaustive events, then the set of all values of p is
 - (a) $\left[-\frac{1}{4}, \frac{1}{3}\right]$
 - (b) (0, 1)
 - (c) $\left(0, \frac{1}{3}\right)$
 - (d) (0, ∞)
- 36. There are two persons A and B such that the chances of B telling the truth are twice that of A. A tells the truth in more than 25% cases. If A and B contradict each other in narrating the same statement, then the probability that A is telling the truth is
 - (a) $\frac{1}{4}$
 - (b) $\frac{1}{2}$
 - (c) $\frac{2}{3}$
 - (d) $\frac{3}{4}$

- 37. In the two-phase simplex method, the original problem may be a maximization or minimization problem but the phase-I problem
 - (a) is always a minimization problem
 - (b) is always a maximization problem
 - (c) may be minimization or maximization problem
 - (d) None of the above
- 38. If the leaving variable rule is not followed in some iteration of the simplex method, then the next table
 - (a) will not give a basic solution
 - (b) will give a basic solution which is not feasible
 - (c) will give a feasible solution
 - (d) None of the above
- 39. Which one of the following is an incorrect statement?
 - (a) All scarce resources have marginal profitability equal to zero.
 - (b) Shadow prices are also known as imputed values of the resources.
 - (c) A constraint $3x_1 7x_2 + 13x_3 4x_4 \ge -10$ can be equivalently written as $-3x_1 + 7x_2 13x_3 + 4x_4 \le 10$.
 - (d) If all constraints of a minimization problem are ≥' type, then all dual variables are non-negative.
- 40. In linear programming, sensitivity analysis is a technique to
 - (a) allocate resources optimally
 - (b) minimize the cost of operations
 - (c) spell out the relation between primal and dual
 - (d) determine how optimal solution to LPP changes in response to problem inputs

- **41.** According to the fundamental theorem of calculus, if f is continuous on an interval [a, b], then $\frac{d}{dx} \left(\int_a^x f(t) \, dt \right)$ equals
 - (a) f(x)
 - (b) f(x) f(a)
 - (c) f'(x) f(a)
 - (d) f'(x) f'(a)
- 42. The point on the curve $y = x^2$, that is closest to the point (18, 0) is
 - (a) (4, 2)
 - (b) (2, 4)
 - (c) (0, 0)
 - (d) (3, 9)
- **43.** For the sequence $\left\{-2, 2, -\frac{3}{2}, \frac{3}{2}, -\frac{4}{3}, \frac{4}{3}, \cdots\right\}$, the limit inferior and limit superior are respectively
 - (a) -2 and 2
 - (b) -1 and 1
 - (c) both are 0
 - (d) do not exist

44. If $\{a_n\}$ and $\{b_n\}$ be real sequences such that $a_n \le b_n \ \forall n = 1, 2, \cdots$, then which of the following statements is true?

- (a) If $\{a_n\}$ is convergent, then $\{b_n\}$ is also convergent.
- (b) If $\{b_n\}$ is convergent, then $\{a_n\}$ is also convergent.
- (c) If $\{b_n\}$ is divergent, then $\{a_n\}$ is also divergent.
- (d) Nothing can be said.

45. The series $\sum_{n=1}^{\infty} x_n$ converges in the interval

- (a) (-1, 1)
- (b) [-1, 1]
- (C) (-∞, ∞)
- (d) Diverges

46. $\lim_{x\to\infty} (e^x + x)^{1/x} =$

- (a) e
- (b) e+1
- (c) $\frac{1}{e}$
- (d) Does not exist

47. If f is a Riemann integrable function, then which one of the following is true?

- (a) $\int_{a}^{b} f'(x) dx = f(b) f(a)$
- (b) f is a continuous function
- (c) $\int_a^b |f(x)| dx$ exists
- (d) |f| is a continuous function

48. $\int_0^{\pi/2} \log \sin x \, dx =$

(a)
$$\frac{\pi}{2}\log\frac{1}{2}$$

- (b) $\pi \log 2$
- (c) $-\pi \log 2$
- (d) $-\frac{\pi}{2}\log\frac{1}{2}$

49. Consider the function $f(x, y) = \frac{x - y}{(x + y)^3}$ and let

$$I_1 = \int_0^1 dx \int_0^1 f(x, y) dy$$
 and $I_2 = \int_0^1 dy \int_0^1 f(x, y) dx$

Then

(a)
$$I_1 = \frac{1}{2}$$
, $I_2 = -\frac{1}{2}$

(b)
$$I_1 = -\frac{1}{2}$$
, $I_2 = \frac{1}{2}$

(c)
$$I_1 = I_2 = \frac{1}{2}$$

(d)
$$I_1 = I_2 = -\frac{1}{2}$$

50. Let $\{x_n\}$ be a sequence defined as follows:

$$x_1 = 0$$

 $8x_{n+1}^3 = 6x_n + 1$, $n = 1, 2, 3, \cdots$

Then the sequence $\{x_n\}$ is

- (a) bounded and increasing
- (b) only bounded
- (c) only increasing
- (d) neither bounded nor increasing

- **51.** Let f and g be two functions such that f(x) = g(x) for all $x \in \mathbb{Q}$, the set of rationals. Then f(x) = g(x) for all $x \in \mathbb{R}$, if
 - (a) either f or g is continuous on \mathbb{R}
 - (b) f and g are both continuous on \mathbb{Q}
 - (c) f and g are both continuous on the complement of $\mathbb Q$
 - (d) f and g are both continuous on \mathbb{R}
- **52.** Let $f: A \subset \mathbb{R} \to \mathbb{R}$ be a function such that $f'(x) \neq 0$ for all $x \in A$. Then the function f is
 - (a) bounded
 - (b) increasing
 - (c) decreasing
 - (d) one-one
- 53. Let f be Riemann integrable on [a, b]. Define

$$F(x) = \int_a^x f(t) dt$$
, $\forall x \in [a, b]$

Then which one of the following statements is not true?

- (a) F is continuous.
- (b) F is differentiable.
- (c) If f is continuous, then F is continuous.
- (d) If f is continuous, then F is differentiable.
- 54. If $\vec{A} = x^2 z^2 \hat{i} 2y^2 z^2 \hat{j} + xy^2 z \hat{k}$, then the value of $\nabla \times \vec{A}$ at the point (1, -1, 1) is
 - (a) $2\hat{i} + \hat{j}$
 - (b) $2\hat{i} \hat{j}$
 - (c) $\hat{i} + 2\hat{j}$
 - (d) $\hat{i} 2\hat{j}$

55.	If A is a 3×3	matrix over	R,	then	$(t^2$	$+1)(t^2$	+2)
-----	---------------	-------------	----	------	--------	-----------	-----

- (a) is a minimal polynomial
- (b) is a characteristic polynomial
- (c) Both (a) and (b) are true
- (d) Neither (a) nor (b) is true

56. If M is a 2-square matrix of rank 1, then M is

- (a) diagonalizable and non-singular
- (b) diagonalizable and nilpotent
- (c) neither diagonalizable nor nilpotent
- (d) either diagonalizable or nilpotent

57. If A is a 4-square matrix and $A^5 = 0$, then

- (a) $A^4 = I$
- (b) $A^4 = A$
- (c) $A^4 = 0$
- (d) $A^4 = -I$

58. If I be the identity transformation of the finite-dimensional vector space V, then the nullity of I is

- (a) dim V
- (b) O
- (c) 1
- (d) $\dim V 1$

/7-A		18
	(đ)	permutation
	(c)	quotient
	(b)	normal
	(a)	Abelian
62.	Ever	y homomorphic image of a group G is isomorphic to some $_{}$ groups of G .
	(d)	None of the above
	(c)	always 8
	(b)	always 4
	(a)	always 2
61.	Let sma	H_1 , H_2 be two distinct subgroups of a finite group G , each of order 2. Let H be the dlest subgroup containing H_1 and H_2 . Then the order of H is
	(d)	None of the above
	(c)	mn
	(b)	n
	(a)	m
60.	If t	he elements a , b of a group commute and $o(a) = m$, $o(b) = n$, where m and n are atively prime, then $o(ab)$ is
	(d)	y'A = 0 for some non-zero y , where y' denotes the transpose of vector y .
	(c)	If $Ax = b$ has a solution, then it is unique.
	(p)	Ax = 0 does not have a solution.
	(a)	Ax = b has a solution for any b .

If A be $m \times n$ matrix of rank n with real entries, then which of the following statements is

59.

correct?

63.	If S b	be the collection of (isomorphism classes of) groups G which have the proper element of G commutes only with the identity element and itself, then	ty that
	(a)	S = 1	
	(b)	S =2	
	(c)	$ S \ge 3$ and is finite	
	(d)	$ S = \infty$	
64.	For a	a group G , if $F(G)$ denotes the collection of all subgroups of G , which of the forations can occur?	ollowing
	(a)	G is finite but $F(G)$ is infinite	
	(b)	G is infinite but $F(G)$ is finite	
	(c)	G is countable but $F(G)$ is uncountable	
	(d)	G is uncountable but $F(G)$ is countable	
65.	A p	olynomial of odd degree with real coefficients must have	
	(a)	at least one real root	
	(b)	no real root	
	(c)	only real roots	
	(d)	at least one root which is not real	
66.	Wh	sich of the following primes satisfies the congruence $a^{24} \equiv 6a + 2 \mod 13$?	
	(a)	41	
	(b)	47	
	(c)	67	
	(d)	83	
/7-A		19	[P.T.O.

67. The algebraic structure ($\{0, 1, 2, 3\}, +4, +4\}$ is a/an

- (a) ring
- (b) integral domain
- (c) field
- (d) skew field

68. A finite commutative ring with 0 is a/an

- (a) ring
- (b) integral domain
- (c) field
- (d) skew field

69. The differential equation $\left| \frac{du}{dx} \right| + |u| = 0$ has

- (a) no solution
- (b) one non-zero solution
- (c) only trivial solution
- (d) infinitely many non-zero solutions

70. The differential equation $\left| \frac{du}{dx} \right| + |u| + 5 = 0$ has

- (a) no solution
- (b) one non-zero solution
- (c) only trivial solution
- (d) infinitely many non-zero solutions

71. If I, R and L denote current, resistance and inductance in an electrical circuit and satisfy the initial value problem

$$L\frac{dI}{dt} + RI = 0, \ I(0) = 5$$

then the value of the current at time t is given by

- (a) $5e^{-(\frac{R}{L})t}$
- (b) $7e^{-\binom{R}{L}t}$
- (c) $8e^{-\binom{R}{L}t}$
- (d) $5e^{\binom{R}{L}t}$
- 72. The general solution of the linear non-homogeneous partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - 6 \frac{\partial^2 u}{\partial y^2} = y \cos(x)$$

is

- (a) $\varphi_1(y-x) + \varphi_2(y+x) + \sin(x) y\cos(5x)$
- (b) $\varphi_1(4y-3x) + \varphi_2(3y+2x) + \sin(5x) y\cos(x)$
- (c) $\varphi_1(y-3x) + \varphi_2(y+2x) + \sin(x) y \cos(x)$
- (d) $\varphi_1(y-3x) + \varphi_2(3y+2x) + \sin(2x) y\cos(x)$
- 73. The following partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + 3\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$

is classified as

- (a) elliptic
- (b) non-linear
- (c) parabolic
- (d) hyperbolic

74. Where, in the xy-plane, is the differential equation

$$\frac{dy}{dx} = \frac{1+x^2}{3y-y^2}$$

guaranteed to have a unique solution?

- (a) Everywhere except for $y \neq 0$
- (b) Everywhere except for $y \neq 3$
- (c) Everywhere except for $y \neq 0$ and $y \neq 3$
- (d) The solution does not exist anywhere

75. The general solution to the ordinary differential equation

$$\frac{d^2u}{dx^2} + 6\frac{du}{dx} + 9u = 0$$

is $u(x) = Axe^{-3x} + Be^{-3x}$. Which of the following options is correct?

- (a) As $x \to \infty$, $u \to A$ for any value of B
- (b) The behaviour of u as $x \to \infty$ depends on A and B
- (c) As $x \to \infty$, $u \to \infty$ for any value of A and B
- (d) As $x \to \infty$, $u \to 0$ for any value of A and B

76. The partial differential equation that governs the family of surfaces $u(x, y) = (x - \alpha)^2 + (y - \beta)^2$ is given by

(a)
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 4u$$

(b)
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 4u$$

(c)
$$\left(\frac{\partial u}{\partial x}\right)^4 + \left(\frac{\partial u}{\partial y}\right)^4 = 4u$$

(d)
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = u$$

77. Which one of the following represents a one-space dimensional wave equation in Cartesian coordinates system?

(a)
$$\frac{\partial u}{\partial x} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

(b)
$$\frac{\partial^4 u}{\partial x^4} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

(c)
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

(d)
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^4 u}{\partial t^4}$$

78. Consider the differential equation

$$\frac{d^2u}{dx^2} + 2\frac{du}{dx} - 8u = 0$$

The values of B for which the given differential equation has solution of the form $u(x) = e^{Bx}$ are

- (a) 2, 4
- (b) 2, -4
- $\{c\}$ 4, -4
- (d) 1, -4
- 79. The characteristic curve of $2y\frac{\partial u}{\partial x} + (2x + y^2)\frac{\partial u}{\partial y} = 0$ passing through (0, 0) is given by

(a)
$$u^4 = 2(e^x - x - 1)$$

(b)
$$u^2 = 2(e^x - x - 1)$$

(c)
$$u^2 = 2(e^x + 5x + 1)$$

(d)
$$u = \sin(x) - x - 1$$

- 80. Using four digits rounding arithmetic, the most accurate value of the smaller root of the quadratic equation $0.2x^2 47.91x + 6 = 0$ is
 - (a) 0·1132
 - (b) 0·1200
 - (c) 0·1253
 - (d) 0·1500
- **81.** For the function $f(x) = x^3 + x^2 3x 3$, the iteration function

$$g(x) = \sqrt{(3+3x-x^2)/x}$$

converges to zero α of f with initial guess $x_0 = 1.0$. Then α is

- (a) -1
- (b) $-\sqrt{3}$
- (c) $\sqrt{3}$
- (d) 1
- 82. The order of convergence of the fixed point iteration scheme for the iteration function

$$g(x) = \frac{1}{2} \left(x + \frac{a}{x} \right)$$

to the fixed point is

- (a) 1
- (b) 2
- (c) $\sqrt{2}$
- (d) 3
- **83.** For the matrix $A = \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$, the l_{∞} norm is
 - (a) 3
 - (b) 7
 - (c) 4
 - (d) 1

84. The Gauss-Seidel method with initial guess $x^{(0)} = [0, 0, 0]^T$ applied to the system of equations

$$5x_1 + x_2 + 2x_3 = 10$$

$$-3x_1 + 9x_2 + 4x_3 = -14$$

$$x_1 + 2x_2 - 7x_3 = -33$$

gives the solution at 1st iteration as

- (a) $x^{(1)} = [2 \cdot 00, -0.89, 4.75]^T$
- (b) $x^{(1)} = [2.00, 0.89, 4.75]^T$
- (c) $x^{\{1\}} = [1.00, -0.89, 4.75]^T$
- (d) $x^{\{1\}} = [2.00, 0.89, -4.75]^T$
- 85. Newton's method applied to the system of non-linear algebraic equations with initial guess $x^{(0)} = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$

$$x_1^3 - 2x_2 - 2 = 0$$

$$x_1^3 - 5x_3^2 + 7 = 0$$

$$x_2x_3^2 - 1 = 0$$

gives the approximate solution at 1st iteration as

- (a) $x^{(1)} = [1.43, 0.143, 1.43]^T$
- (b) $x^{(1)} = [1.43, 0, 1.43]^T$
- (c) $x^{(1)} = [1.00, 0.143, 1.43]^T$
- (d) $x^{(1)} = \{1.43, 0.143, 1.00\}^T$
- 86. The coefficient of $x^2(x-2)$ in Newton's form of Hermite interpolating polynomial of the function f(0) = 0, $f(2) = 2e^{-2}$, $f(4) = 4e^{-4}$, f'(0) = 1, $f'(2) = -e^{-2}$, $f'(4) = -3e^{-4}$ is
 - (a) $\frac{2e^{-2}-1}{2}$
 - (b) $\frac{-2e^{-2}-1}{2}$
 - (c) $\frac{3e^{-2}-1}{2}$
 - (d) $\frac{e^{-2}-1}{2}$

- 87. If $x \in [0, 5]$, then what is the probability that $x^2 3x + 2 \ge 0$?
 - (a) $\frac{4}{5}$
 - (b) $\frac{1}{5}$
 - (c) $\frac{2}{5}$
 - (d) $\frac{3}{5}$
- 88. The probability of India winning a test match against Australia is $\frac{2}{3}$. Assuming independence from match to match, the probability that in a 7-match series India's third win occurs at the fifth match, is
 - (a) $\frac{1}{4}$
 - (b) $\frac{3}{4}$
 - (c) $\frac{2}{3}$
 - (d) $\frac{1}{2}$
- 89. Let X be a random variable having Poisson distribution. If the probability of success p = 0.001, then find out the number of trials required for attaining at least one success with more than 99% surety, i.e., $P(X \ge 1) \ge 0.99$ is
 - (a) $n \ge 4600$
 - (b) $n \ge 4300$
 - (c) $n \ge 2300$
 - (d) $n \ge 2700$
- 90. If the two lines of regression, viz., y on x and x on y are $y = \frac{1}{7}x 11$, x = cy + 12 respectively, then the limit within which the constant c must lie is given by
 - (a) $-1 \le c \le 1$
 - (b) $5 \le c \le 6$
 - (c) $0 \le c \le 7$
 - (d) $3 \le c \le 5$

91. A continuous random variable X has a probability density function

$$f(x) = \begin{cases} x^2, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

If $P(X \le a) = P(X > a)$, then

- (a) $\alpha = \left(\frac{1}{2}\right)^{\frac{1}{3}}$
- (b) $\alpha = \frac{1}{\sqrt{2}}$
- (c) $a = \frac{1}{2}$
- (d) None of the above
- **92.** A random variable X has the following probability distribution:

X	1	2	3	4	5	6	7	8
P(X)	0.15	0.23	0.12	0.10	0.20	0.08	0.07	0.05

For the events $E = \{X \text{ is a prime number}\}, F = \{X < 4\}$, the probability $P(E \cup F)$, is

- (a) 0.50
- (b) 0·77
- (c) 0·35
- (d) 0.87
- 93. A rifleman is firing at a distant target and has only a 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
 - (a) 11
 - (b) 5
 - (c) 9
 - (d) 7

- **94.** The following five inequalities define a feasible region. Which one of these could be removed from the list without changing the region?
 - (a) $x 2y \ge -8$
 - (b) $x \ge 0$; $y \ge 0$
 - $(c) -x + y \le 10$
 - (d) $x + y \le 20$
- 95. A basic solution is called degenerate if
 - (a) the value of at least one of the basic variables is non-zero
 - (b) the value of all the basic variables is zero
 - (c) the value of at least one of the basic variables is zero
 - (d) the value of all the basic variables is non-zero
- 96. Worstcase complexity of simplex method as formulated by Dantzig is
 - (a) exponential time
 - (b) polynomial time
 - (c) Cannot be determined
 - (d) None of the above
- 97. The situation in which objective function is parallel to the binding constraint of direction optimization is classified as
 - (a) negative optimal solution
 - (b) positive optimal solution
 - (c) alternative optimal solution
 - (d) regular optimal solution

98.	The analysis which is used to determine the effect of coefficient change with the same current basis is classified as	
	(a)	parameter analysis
	(b)	original analysis
	(c)	sensitivity analysis
	(d)	formulation analysis
99.	For every (=) to constraint, the variable which is added to left side of the equation is classified as	
	(a)	original variable
	(b)	artificial variable
	(c)	additive variable
	(d)	non-additive variable
100.	The non-negative variable subtracted from any less than or equal to constraint of simplex method is classified as	
	(a)	surplus variable
	(b)	deficit variable
	(c)	right variable
	(d)	left constant ★★★
/7-A		29 [P.T.O.

SPACE FOR ROUGH WORK

/7-A